133 research outputs found

    Low-Cost S-Band Reconfigurable Monopole/Patch Antenna for CubeSats

    Get PDF
    The development of reconfigurable antennas compatible with a CubeSat form factor can aid several space missions. Often, satellite missions require multiple wireless links with the same radio, but the design of such antennas is challenging due to the mechanical constraints and the limited power aboard a CubeSat. In this article, we present a unique reconfigurable antenna concept enabled by adhesive polyimide tapes. The presented antenna can switch from a conventional patch to a monopole-like antenna with minimal actuation complexity. This reconfiguration provides choices for polarization, pattern, and gain without use of active components for size, cost and power consumption reductions. The frequency of operation is S-band (2.4 GHz), and the antenna achieves S_{11} \u3c -10 dB for both reconfiguration states. Measurements compare well with simulations in both states

    Payload capabilities and operational limits of eversion robots

    Get PDF
    Recent progress in soft robotics has seen new types of actuation mechanisms based on apical extension which allows robots to grow to unprecedented lengths. Eversion robots are a type of robots based on the principle of apical extension offering excellent maneuverability and ease of control allowing users to conduct tasks from a distance. Mechanical modelling of these robotic structures is very important for understanding their operational capabilities. In this paper, we model the eversion robot as a thin-walled cylindrical beam inflated with air pressure, using Timoshenko beam theory considering rotational and shear effects. We examine the various failure modes of the eversion robots such as yielding, buckling instability and lateral collapse, and study the payloads and operational limits of these robots in axial and lateral loading conditions. Surface maps showing the operational boundaries for different combinations of the geometrical parameters are presented. This work provides insights into the design of eversion robots and can pave the way towards eversion robots with high payload capabilities that can act from long distances

    Low-profile antenna system for cognitive radio in IoST CubeSat applications

    Get PDF
    Since the CubeSats have become inherently used for the Internet of space things (IoST) applications, the limited spectral band at the ultra-high frequency (UHF) and very high frequency should be efficiently utilized to be sufficient for different applications of CubeSats. Therefore, cognitive radio (CR) has been used as an enabling technology for efficient, dynamic, and flexible spectrum utilization. So, this paper proposes a low-profile antenna for cognitive radio in IoST CubeSat applications at the UHF band. The proposed antenna comprises a circularly polarized wideband (WB) semi-hexagonal slot and two narrowband (NB) frequency reconfigurable loop slots integrated into a single-layer substrate. The semi-hexagonal-shaped slot antenna is excited by two orthogonal +/−45° tapered feed lines and loaded by a capacitor in order to achieve left/right-handed circular polarization in wide bandwidth from 0.57 GHz to 0.95 GHz. In addition, two NB frequency reconfigurable slot loop-based antennas are tuned over a wide frequency band from 0.6 GHz to 1.05 GH. The antenna tuning is achieved based on a varactor diode integrated into the slot loop antenna. The two NB antennas are designed as meander loops to miniaturize the physical length and point in different directions to achieve pattern diversity. The antenna design is fabricated on FR-4 substrate, and measured results have verified the simulated results

    Robotic Barrier Construction through Weaved, Inflatable Tubes

    Full text link
    In this article, we present a mechanism and related path planning algorithm to construct light-duty barriers out of extruded, inflated tubes weaved around existing environmental features. Our extruded tubes are based on everted vine-robots and in this context, we present a new method to steer their growth. We characterize the mechanism in terms of accuracy resilience, and, towards their use as barriers, the ability of the tubes to withstand distributed loads. We further explore an algorithm which, given a feature map and the size and direction of the external load, can determine where and how to extrude the barrier. Finally, we showcase the potential of this method in an autonomously extruded two-layer wall weaved around three pipes. While preliminary, our work indicates that this method has the potential for barrier construction in cluttered environments, e.g. shelters against wind or snow. Future work may show how to achieve tighter weaves, how to leverage weave friction for improved strength, how to assess barrier performance for feedback control, and how to operate the extrusion mechanism off of a mobile robot

    Water Based Soil Fluidization using a Soft Eversion Robot

    Get PDF
    Soft robotics, a form of robotics that incorporates nonrigid components, continues to grow in scope, system design, and application. A recent addition to this field is the Vine Robot platform, a bio-inspired robot designed by Stanford University in 2017. Its method of movement, known as eversion, closely resembles the way that a vine grows along a tree, giving it its name. The focus of this research was to take its proven abilities of underwater vine-like movement and soil fluidization, a process where granular materials are converted from a solid-like state to a fluid-like state, to create an underwater eversion robot capable of burrowing into sand. This was done with the goal of providing a future platform for research into soil composition studies, underwater movement using multiple eversion and fluidization tubes, and other ventures. The unique ability of this platform is extending its reach far beyond that of comparable sized systems. Specific focus was given to the measured abilities of eversion into granular substances using a combination of air and water eversion material, with the former given preference due to its accessibility in underwater environments. The resulting testing showed the capability of using the water as a fluidization material, especially in underwater environments

    NASA Tech Briefs, February 2005

    Get PDF
    Topics discussed include: Instrumentation for Sensitive Gas Measurements; Apparatus for Testing Flat Specimens of Thermal Insulation; Quadrupole Ion Mass Spectrometer for Masses of 2 to 50 Da; Miniature Laser Doppler Velocimeter for Measuring Wall Shear; Coherent Laser Instrument Would Measure Range and Velocity; Printed Microinductors for Flexible Substrates; Digital Receiver for Microwave Radiometry; Printed Antennas Made Reconfigurable by Use of MEMS Switches; Traffic-Light-Preemption Vehicle-Transponder Software Module; Intersection-Controller Software Module; Central-Monitor Software Module; Estimating Effects of Multipath Propagation on GPS Signals; Parallel Adaptive Mesh Refinement Library; Predicting Noise From Aircraft Turbine-Engine Combustors; Generating Animated Displays of Spacecraft Orbits; Diagnosis and Prognosis of Weapon Systems; Training Software in Artificial-Intelligence Computing Techniques; APGEN Version 5.0; Single-Command Approach and Instrument Placement by a Robot on a Target; Three-Dimensional Audio Client Library; Isogrid Membranes for Precise, Singly Curved Reflectors; Nickel-Tin Electrode Materials for Nonaqueous Li-Ion Cells; Photocatalytic Coats in Glass Drinking-Water Bottles; Fast Laser Shutters With Low Vibratory Disturbances; Series-Connected Buck Boost Regulators; Space Physics Data Facility Web Services; Split-Resonator, Integrated-Post Vibratory Microgyroscope; Blended Buffet-Load-Alleviation System for Fighter Airplane; Gifford-McMahon/Joule-Thomson Refrigerator Cools to 2.5 K; High-Temperature, High-Load-Capacity Radial Magnetic Bearing; Fabrication of Spherical Reflectors in Outer Space; Automated Rapid Prototyping of 3D Ceramic Parts; Tissue Engineering Using Transfected Growth-Factor Genes; Automation of Vapor-Diffusion Growth of Protein Crystals; Atom Skimmers and Atom Lasers Utilizing Them; Gears Based on Carbon Nanotubes; Patched Off-Axis Bending/Twisting Actuators for Thin Mirrors; and Improving Control in a Joule-Thomson Refrigerator

    Additive Manufactured Antennas and Novel Frequency Selective Sensors

    Get PDF
    The research work carried out and reported in this thesis focuses on the application of additive manufacturing (AM) for the development antennas and novel frequency selective surfaces structures. Various AM techniques such as direct writing (DW), material extrusion, nanoparticle conductive inks are investigated for the fabrication of antennas and FSS based sensors. This research has two parts. The first involves the development of antennas at the microwave and millimetre wave bands using AM techniques. Inkjet printing of nanoparticle silver inks on paper substrate is employed in the fabrication of antennas for an origami robotic bird. This provides an exploration on the practicability of developing foldable antennas which can be integrated on expendable robots using low-cost household inkjet printers. This is followed using Aerosol jet printing in the fabrication of fingernail wearable antennas. The antennas are developed to operate at microwave and millimetre wave bands for potential use in 5G Internet of Things (IoT) or body-centric networks. The second part of the research work involves the development of frequency selective sensors. Trenches have been incorporated on an FSS structure to produce a new concept of liquid sensor. The sensor is fabricated using standard etching techniques and then using FDM method in conjunction with nanoparticle conductive ink. Finally, a new concept displacement sensor using an FSS coupled with a retracting substrate complement is introduced. The displacement sensor is a 3D structure which is conveniently fabricated using AM techniques
    • …
    corecore