9 research outputs found

    Payload capabilities and operational limits of eversion robots

    Get PDF
    Recent progress in soft robotics has seen new types of actuation mechanisms based on apical extension which allows robots to grow to unprecedented lengths. Eversion robots are a type of robots based on the principle of apical extension offering excellent maneuverability and ease of control allowing users to conduct tasks from a distance. Mechanical modelling of these robotic structures is very important for understanding their operational capabilities. In this paper, we model the eversion robot as a thin-walled cylindrical beam inflated with air pressure, using Timoshenko beam theory considering rotational and shear effects. We examine the various failure modes of the eversion robots such as yielding, buckling instability and lateral collapse, and study the payloads and operational limits of these robots in axial and lateral loading conditions. Surface maps showing the operational boundaries for different combinations of the geometrical parameters are presented. This work provides insights into the design of eversion robots and can pave the way towards eversion robots with high payload capabilities that can act from long distances

    Water Based Soil Fluidization using a Soft Eversion Robot

    Get PDF
    Soft robotics, a form of robotics that incorporates nonrigid components, continues to grow in scope, system design, and application. A recent addition to this field is the Vine Robot platform, a bio-inspired robot designed by Stanford University in 2017. Its method of movement, known as eversion, closely resembles the way that a vine grows along a tree, giving it its name. The focus of this research was to take its proven abilities of underwater vine-like movement and soil fluidization, a process where granular materials are converted from a solid-like state to a fluid-like state, to create an underwater eversion robot capable of burrowing into sand. This was done with the goal of providing a future platform for research into soil composition studies, underwater movement using multiple eversion and fluidization tubes, and other ventures. The unique ability of this platform is extending its reach far beyond that of comparable sized systems. Specific focus was given to the measured abilities of eversion into granular substances using a combination of air and water eversion material, with the former given preference due to its accessibility in underwater environments. The resulting testing showed the capability of using the water as a fluidization material, especially in underwater environments

    A comparative review of artificial muscles for microsystem applications

    Get PDF
    Artificial muscles are capable of generating actuation in microsystems with outstanding compliance. Recent years have witnessed a growing academic interest in artificial muscles and their application in many areas, such as soft robotics and biomedical devices. This paper aims to provide a comparative review of recent advances in artificial muscle based on various operating mechanisms. The advantages and limitations of each operating mechanism are analyzed and compared. According to the unique application requirements and electrical and mechanical properties of the muscle types, we suggest suitable artificial muscle mechanisms for specific microsystem applications. Finally, we discuss potential strategies for energy delivery, conversion, and storage to promote the energy autonomy of microrobotic systems at a system level

    Pneumatic Latched Demultiplexer Circuit for Controlling Multi-Actuator Soft Robots

    Get PDF
    This thesis presents a novel method for controlling multi-actuator soft robots using pneumatic latched demultiplexer circuits implemented with monolithic membrane valves. The pneumatic circuits are designed to address the problems of heavy dependence on hard electrical components and lack of feasible multi-actuator soft robotic systems that limit the potential applications of soft robotics. The proposed pneumatic demultiplexers reduce the number of solenoid valves and electrical components required to drive soft robotic systems, making soft robot control mechanisms more compliant, scalable, and versatile. The thesis demonstrates the design, fabrication, and testing of 4-bit and n-bit pneumatic demultiplexer circuits that can control 16-actuator and 2n-actuator soft robotic systems respectively. The thesis also evaluates the performance and functionality of the pneumatic circuits and discusses their potential applications in various fields of soft robotics

    A comparative review of artificial muscles for microsystem applications

    Get PDF
    Artificial muscles are capable of generating actuation in microsystems with outstanding compliance. Recent years have witnessed a growing academic interest in artificial muscles and their application in many areas, such as soft robotics and biomedical devices. This paper aims to provide a comparative review of recent advances in artificial muscle based on various operating mechanisms. The advantages and limitations of each operating mechanism are analyzed and compared. According to the unique application requirements and electrical and mechanical properties of the muscle types, we suggest suitable artificial muscle mechanisms for specific microsystem applications. Finally, we discuss potential strategies for energy delivery, conversion, and storage to promote the energy autonomy of microrobotic systems at a system level

    A Tip-Extending Soft Robot Enables Reconfigurable and Deployable Antennas

    No full text

    Continuum Mechanical Models for Design and Characterization of Soft Robots

    Full text link
    The emergence of ``soft'' robots, whose bodies are made from stretchable materials, has fundamentally changed the way we design and construct robotic systems. Demonstrations and research show that soft robotic systems can be useful in rehabilitation, medical devices, agriculture, manufacturing and home assistance. Increasing need for collaborative, safe robotic devices have combined with technological advances to create a compelling development landscape for soft robots. However, soft robots are not yet present in medical and rehabilitative devices, agriculture, our homes, and many other human-collaborative and human-interactive applications. This gap between promise and practical implementation exists because foundational theories and techniques that exist in rigid robotics have not yet been developed for soft robots. Theories in traditional robotics rely on rigid body displacements via discrete joints and discrete actuators, while in soft robots, kinematic and actuation functions are blended, leading to nonlinear, continuous deformations rather than rigid body motion. This dissertation addresses the need for foundational techniques using continuum mechanics. Three core questions regarding the use of continuum mechanical models in soft robotics are explored: (1) whether or not continuum mechanical models can describe existing soft actuators, (2) which physical phenomena need to be incorporated into continuum mechanical models for their use in a soft robotics context, and (3) how understanding on continuum mechanical phenomena may form bases for novel soft robot architectures. Theoretical modeling, experimentation, and design prototyping tools are used to explore Fiber-Reinforced Elastomeric Enclosures (FREEs), an often-used soft actuator, and to develop novel soft robot architectures based on auxetic behavior. This dissertation develops a continuum mechanical model for end loading on FREEs. This model connects a FREE’s actuation pressure and kinematic configuration to its end loads by considering stiffness of its elastomer and fiber reinforcement. The model is validated against a large experimental data set and compared to other FREE models used by roboticists. It is shown that the model can describe the FREE’s loading in a generalizable manner, but that it is bounded in its peak performance. Such a model can provide the novel function of evaluating the performance of FREE designs under high loading without the costs of building and testing prototypes. This dissertation further explores the influence viscoelasticity, an inherent property of soft polymers, on end loading of FREEs. The viscoelastic model developed can inform soft roboticists wishing to exploit or avoid hysteresis and force reversal. The final section of the dissertations explores two contrasting styles of auxetic metamaterials for their uses in soft robotic actuation. The first metamaterial architecture is composed of beams with distributed compliance, which are placed antagonistic configurations on a variety of surfaces, giving ride to shape morphing behavior. The second metamaterial architecture studied is a ``kirigami’’ sheet with an orthogonal cut pattern, utilizing lumped compliance and strain hardening to permanently deploy from a compact shape to a functional one. This dissertation lays the foundation for design of soft robots by robust physical models, reducing the need for physical prototypes and trial-and-error approaches. The work presented provides tools for systematic exploration of FREEs under loading in a wide range of configurations. The work further develops new concepts for soft actuators based on continuum mechanical modeling of auxetic metamaterials. The work presented expands the available tools for design and development of soft robotic systems, and the available architectures for soft robot actuation.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163236/1/asedal_1.pd
    corecore