1,156 research outputs found

    Data mining in manufacturing: a review based on the kind of knowledge

    Get PDF
    In modern manufacturing environments, vast amounts of data are collected in database management systems and data warehouses from all involved areas, including product and process design, assembly, materials planning, quality control, scheduling, maintenance, fault detection etc. Data mining has emerged as an important tool for knowledge acquisition from the manufacturing databases. This paper reviews the literature dealing with knowledge discovery and data mining applications in the broad domain of manufacturing with a special emphasis on the type of functions to be performed on the data. The major data mining functions to be performed include characterization and description, association, classification, prediction, clustering and evolution analysis. The papers reviewed have therefore been categorized in these five categories. It has been shown that there is a rapid growth in the application of data mining in the context of manufacturing processes and enterprises in the last 3 years. This review reveals the progressive applications and existing gaps identified in the context of data mining in manufacturing. A novel text mining approach has also been used on the abstracts and keywords of 150 papers to identify the research gaps and find the linkages between knowledge area, knowledge type and the applied data mining tools and techniques

    Deep Learning -- A first Meta-Survey of selected Reviews across Scientific Disciplines, their Commonalities, Challenges and Research Impact

    Full text link
    Deep learning belongs to the field of artificial intelligence, where machines perform tasks that typically require some kind of human intelligence. Similar to the basic structure of a brain, a deep learning algorithm consists of an artificial neural network, which resembles the biological brain structure. Mimicking the learning process of humans with their senses, deep learning networks are fed with (sensory) data, like texts, images, videos or sounds. These networks outperform the state-of-the-art methods in different tasks and, because of this, the whole field saw an exponential growth during the last years. This growth resulted in way over 10,000 publications per year in the last years. For example, the search engine PubMed alone, which covers only a sub-set of all publications in the medical field, provides already over 11,000 results in Q3 2020 for the search term 'deep learning', and around 90% of these results are from the last three years. Consequently, a complete overview over the field of deep learning is already impossible to obtain and, in the near future, it will potentially become difficult to obtain an overview over a subfield. However, there are several review articles about deep learning, which are focused on specific scientific fields or applications, for example deep learning advances in computer vision or in specific tasks like object detection. With these surveys as a foundation, the aim of this contribution is to provide a first high-level, categorized meta-survey of selected reviews on deep learning across different scientific disciplines. The categories (computer vision, language processing, medical informatics and additional works) have been chosen according to the underlying data sources (image, language, medical, mixed). In addition, we review the common architectures, methods, pros, cons, evaluations, challenges and future directions for every sub-category.Comment: 83 pages, 22 figures, 9 tables, 100 reference

    Towards Real-World Federated Learning: Empirical Studies in the Domain of Embedded Systems

    Get PDF
    Context: Artificial intelligence (AI) has led a new phase of technical revolution and industrial development around the world since the twenty-first century, revolutionizing the way of production. Artificial intelligence (AI), an emerging information technology, is thriving, and AI application technologies are gaining traction, particularly in professional services such as healthcare, education, finance, security, etc. More machine learning technologies have begun to be thoroughly applied to the production stage as big data and cloud computing capabilities have improved. With the increased focus on Machine Learning applications and the rapid growth of distributed edge devices in the industry, we believe that utilizing a large number of edge devices will become increasingly important. The introduction of Federated Learning changes the situation in which data must be centrally uploaded to the cloud for processing and maximizes the use of edge devices\u27 computing and storage capabilities. With local data processing, the learning approach eliminates the need to upload large amounts of local data and reduces data transfer latency. Because Federated Learning does not require centralized data for model training, it is better suited to edge learning scenarios with limited data and privacy concerns. Objective: The purpose of this research is to identify the characteristics and problems of the Federated Learning methods, our new algorithms and frameworks that can assist companies in making the transition to Federated Learning, and empirically validate the proposed approaches. Method: To achieve these objectives, we adopted an empirical research approach with design science being our primary research method. We conducted a literature review, case studies, including semi-structured interviews and simulation experiments in close collaboration with software-intensive companies in the embedded systems domain. Results: We present four major findings in this paper. First, we present a state-of-the-art review of the empirical results reported in the existing Federated Learning literature. We then categorize those Federated Learning implementations into different application domains, identify their challenges, and propose six open research questions based on the problems identified in the literature. Second, we conduct a case study to explain why companies anticipate Federated Learning as a potential solution to the challenges they encountered when implementing machine learning components. We summarize the services that a comprehensive Federated Learning system must enable in industrial settings. Furthermore, we identify the primary barriers that companies must overcome in order to embrace and transition to Federated Learning. Based on our empirical findings, we propose five requirements for companies implementing reliable Federated Learning systems. Third, we develop and evaluate four architecture alternatives for a Federated Learning system, including centralized, hierarchical, regional, and decentralized architectures. We investigate the trade-o between communication latency, model evolution time, and model classification performance, which is critical for applying our findings to real-world industrial systems. Fourth, we introduce techniques and asynchronous frameworks for end-to-end on-device Federated Learning. The method is validated using a steering wheel angle prediction case. The local models of each edge vehicle can be continuously trained and shared with other vehicles to improve their local model prediction accuracy. Furthermore, we combine the asynchronous Federated Learning approach with Deep Neural Decision Forests and validate our method using important industry use cases in the automotive domain. Our findings show that Federated Learning can improve model training speed while lowering communication overhead without sacrificing accuracy, demonstrating that this technique has significant benefits to a wide range of real-world embedded systems. Future Work: In the future, we plan to test our approach in other use cases and look into more sophisticated neural networks integrated with our approach. In order to improve model training performance on resource-constrained edge devices in real-world embedded systems, we intend to design more appropriate aggregation methods and protocols. Furthermore, we intend to use the Federated Learning and Reinforcement Learning methods to assist the edge in evolving themselves autonomously and fully utilizing the computation capabilities of the edge devices

    Let’s augment the future together!:Augmented reality troubleshooting support for IT/OT rolling stock failures

    Get PDF
    The railway industry is moving to a socio-technological system that relies on computer-controlled and human-machine interfaces. Opportunities arise for creating new services and commercial business cases by using technological innovations and traffic management systems. The convergence of Information Technology (IT) with Operational Technology (OT) is critical for cost-effective and reliable railway operations. However, this convergence introduces complexities, leading to more intricate rolling stock system failures. Hence, operators necessitate assistance in their troubleshooting and maintenance strategy to simplify the decision-making and action-taking processes. Augmented Reality (AR) emerges as a pivotal tool for troubleshooting within this context. AR enhances the operator’s ability to visualize, contextualize, and understand complex data by overlaying real-time and virtual information onto physical objects. AR supports the identification of IT/OT rolling stock system failures, offers troubleshooting directions, and streamlines maintenance procedures, ultimately enhancing decision-making and action-taking processes. This thesis investigates how AR can support operators in navigating troubleshooting and maintenance challenges posed by IT/OT rolling stock system failures in the railway industry

    A framework to estimate cognitive load using physiological data

    Get PDF
    Cognitive load has been widely studied to help understand human performance. It is desirable to monitor user cognitive load in applications such as automation, robotics, and aerospace to achieve operational safety and to improve user experience. This can allow efficient workload management and can help to avoid or to reduce human error. However, tracking cognitive load in real time with high accuracy remains a challenge. Hence, we propose a framework to detect cognitive load by non-intrusively measuring physiological data from the eyes and heart. We exemplify and evaluate the framework where participants engage in a task that induces different levels of cognitive load. The framework uses a set of classifiers to accurately predict low, medium and high levels of cognitive load. The classifiers achieve high predictive accuracy. In particular, Random Forest and Naive Bayes performed best with accuracies of 91.66% and 85.83% respectively. Furthermore, we found that, while mean pupil diameter change for both right and left eye were the most prominent features, blinking rate also made a moderately important contribution to this highly accurate prediction of low, medium and high cognitive load. The existing results on accuracy considerably outperform prior approaches and demonstrate the applicability of our framework to detect cognitive load

    Automated analysis of heterogeneous catalyst materials using deep learning

    Get PDF
    Heterogeneous catalyst materials play a key role in modern society, as many processes in the chemical and energy industry rely on them. Optimising their performance is directly connected to a large potential of reductions in energy consumption, and thus to a more sustainable future. A fundamental part in the optimisation process is represented by materials characterisation. This is often done using in situ (Scanning) Transmission Electron Microscopy ((S)TEM) imaging in order to obtain a full understanding of the catalyst performance in different environments and temperatures at high resolution. However, the analysis of corresponding dynamical datasets is often time-consuming and requires manual intervention alongside tailored post-processing routines. At the same time, the emergence of direct electron detectors allowing for the acquisition of datasets at kiloHertz frame rates, as well as novel imaging techniques raised data generation rates significantly and created a need for new, reliable and automated data processing techniques. This work introduces nNPipe as Deep Learning based method for the automated analysis of morphologically diverse heterogeneous catalyst systems. The method is based on two Covolutional Neural Networks (CNNs) that were exclusively trained on computationally generated HRTEM image simulations and allow for rapid and precise analysis of raw 2048 x 2048 experimental HRTEM images. The performance of nNPipe is demonstrated in a realistic automated imaging scenario where statistically significant material properties are inferred accurately. Moreover, time-efficient and reproducible retraining methods based small experimental datasets are described for both, further performance improvements and adaption to new imaging scenarios. In this context, a potentially new pathway for the generation of suitable training datasets obtained by thousands of mostly non-expert annotations is highlighted. Finally, the analytical capacities of the nNPipe method are showcased on time-resolved datasets in two advanced applications scenarios: i) Live image analysis during sample acquisition and ii) Analysis of the particle coalescence of an in situ heated Pd/C catalyst
    • …
    corecore