3,754 research outputs found

    Interpretable Probabilistic Password Strength Meters via Deep Learning

    Full text link
    Probabilistic password strength meters have been proved to be the most accurate tools to measure password strength. Unfortunately, by construction, they are limited to solely produce an opaque security estimation that fails to fully support the user during the password composition. In the present work, we move the first steps towards cracking the intelligibility barrier of this compelling class of meters. We show that probabilistic password meters inherently own the capability of describing the latent relation occurring between password strength and password structure. In our approach, the security contribution of each character composing a password is disentangled and used to provide explicit fine-grained feedback for the user. Furthermore, unlike existing heuristic constructions, our method is free from any human bias, and, more importantly, its feedback has a clear probabilistic interpretation. In our contribution: (1) we formulate the theoretical foundations of interpretable probabilistic password strength meters; (2) we describe how they can be implemented via an efficient and lightweight deep learning framework suitable for client-side operability.Comment: An abridged version of this paper appears in the proceedings of the 25th European Symposium on Research in Computer Security (ESORICS) 202

    PassGAN: A Deep Learning Approach for Password Guessing

    Full text link
    State-of-the-art password guessing tools, such as HashCat and John the Ripper, enable users to check billions of passwords per second against password hashes. In addition to performing straightforward dictionary attacks, these tools can expand password dictionaries using password generation rules, such as concatenation of words (e.g., "password123456") and leet speak (e.g., "password" becomes "p4s5w0rd"). Although these rules work well in practice, expanding them to model further passwords is a laborious task that requires specialized expertise. To address this issue, in this paper we introduce PassGAN, a novel approach that replaces human-generated password rules with theory-grounded machine learning algorithms. Instead of relying on manual password analysis, PassGAN uses a Generative Adversarial Network (GAN) to autonomously learn the distribution of real passwords from actual password leaks, and to generate high-quality password guesses. Our experiments show that this approach is very promising. When we evaluated PassGAN on two large password datasets, we were able to surpass rule-based and state-of-the-art machine learning password guessing tools. However, in contrast with the other tools, PassGAN achieved this result without any a-priori knowledge on passwords or common password structures. Additionally, when we combined the output of PassGAN with the output of HashCat, we were able to match 51%-73% more passwords than with HashCat alone. This is remarkable, because it shows that PassGAN can autonomously extract a considerable number of password properties that current state-of-the art rules do not encode.Comment: This is an extended version of the paper which appeared in NeurIPS 2018 Workshop on Security in Machine Learning (SecML'18), see https://github.com/secml2018/secml2018.github.io/raw/master/PASSGAN_SECML2018.pd

    Towards Human Computable Passwords

    Get PDF
    An interesting challenge for the cryptography community is to design authentication protocols that are so simple that a human can execute them without relying on a fully trusted computer. We propose several candidate authentication protocols for a setting in which the human user can only receive assistance from a semi-trusted computer --- a computer that stores information and performs computations correctly but does not provide confidentiality. Our schemes use a semi-trusted computer to store and display public challenges Ci[n]kC_i\in[n]^k. The human user memorizes a random secret mapping σ:[n]Zd\sigma:[n]\rightarrow\mathbb{Z}_d and authenticates by computing responses f(σ(Ci))f(\sigma(C_i)) to a sequence of public challenges where f:ZdkZdf:\mathbb{Z}_d^k\rightarrow\mathbb{Z}_d is a function that is easy for the human to evaluate. We prove that any statistical adversary needs to sample m=Ω~(ns(f))m=\tilde{\Omega}(n^{s(f)}) challenge-response pairs to recover σ\sigma, for a security parameter s(f)s(f) that depends on two key properties of ff. To obtain our results, we apply the general hypercontractivity theorem to lower bound the statistical dimension of the distribution over challenge-response pairs induced by ff and σ\sigma. Our lower bounds apply to arbitrary functions ff (not just to functions that are easy for a human to evaluate), and generalize recent results of Feldman et al. As an application, we propose a family of human computable password functions fk1,k2f_{k_1,k_2} in which the user needs to perform 2k1+2k2+12k_1+2k_2+1 primitive operations (e.g., adding two digits or remembering σ(i)\sigma(i)), and we show that s(f)=min{k1+1,(k2+1)/2}s(f) = \min\{k_1+1, (k_2+1)/2\}. For these schemes, we prove that forging passwords is equivalent to recovering the secret mapping. Thus, our human computable password schemes can maintain strong security guarantees even after an adversary has observed the user login to many different accounts.Comment: Fixed bug in definition of Q^{f,j} and modified proofs accordingl

    Exploring the Impact of Password Dataset Distribution on Guessing

    Full text link
    Leaks from password datasets are a regular occurrence. An organization may defend a leak with reassurances that just a small subset of passwords were taken. In this paper we show that the leak of a relatively small number of text-based passwords from an organizations' stored dataset can lead to a further large collection of users being compromised. Taking a sample of passwords from a given dataset of passwords we exploit the knowledge we gain of the distribution to guess other samples from the same dataset. We show theoretically and empirically that the distribution of passwords in the sample follows the same distribution as the passwords in the whole dataset. We propose a function that measures the ability of one distribution to estimate another. Leveraging this we show that a sample of passwords leaked from a given dataset, will compromise the remaining passwords in that dataset better than a sample leaked from another source

    GOTCHA Password Hackers!

    Full text link
    We introduce GOTCHAs (Generating panOptic Turing Tests to Tell Computers and Humans Apart) as a way of preventing automated offline dictionary attacks against user selected passwords. A GOTCHA is a randomized puzzle generation protocol, which involves interaction between a computer and a human. Informally, a GOTCHA should satisfy two key properties: (1) The puzzles are easy for the human to solve. (2) The puzzles are hard for a computer to solve even if it has the random bits used by the computer to generate the final puzzle --- unlike a CAPTCHA. Our main theorem demonstrates that GOTCHAs can be used to mitigate the threat of offline dictionary attacks against passwords by ensuring that a password cracker must receive constant feedback from a human being while mounting an attack. Finally, we provide a candidate construction of GOTCHAs based on Inkblot images. Our construction relies on the usability assumption that users can recognize the phrases that they originally used to describe each Inkblot image --- a much weaker usability assumption than previous password systems based on Inkblots which required users to recall their phrase exactly. We conduct a user study to evaluate the usability of our GOTCHA construction. We also generate a GOTCHA challenge where we encourage artificial intelligence and security researchers to try to crack several passwords protected with our scheme.Comment: 2013 ACM Workshop on Artificial Intelligence and Security (AISec
    corecore