1,798 research outputs found

    A Variational Perspective on Accelerated Methods in Optimization

    Full text link
    Accelerated gradient methods play a central role in optimization, achieving optimal rates in many settings. While many generalizations and extensions of Nesterov's original acceleration method have been proposed, it is not yet clear what is the natural scope of the acceleration concept. In this paper, we study accelerated methods from a continuous-time perspective. We show that there is a Lagrangian functional that we call the \emph{Bregman Lagrangian} which generates a large class of accelerated methods in continuous time, including (but not limited to) accelerated gradient descent, its non-Euclidean extension, and accelerated higher-order gradient methods. We show that the continuous-time limit of all of these methods correspond to traveling the same curve in spacetime at different speeds. From this perspective, Nesterov's technique and many of its generalizations can be viewed as a systematic way to go from the continuous-time curves generated by the Bregman Lagrangian to a family of discrete-time accelerated algorithms.Comment: 38 pages. Subsumes an earlier working draft arXiv:1509.0361

    Accelerated Linearized Bregman Method

    Full text link
    In this paper, we propose and analyze an accelerated linearized Bregman (ALB) method for solving the basis pursuit and related sparse optimization problems. This accelerated algorithm is based on the fact that the linearized Bregman (LB) algorithm is equivalent to a gradient descent method applied to a certain dual formulation. We show that the LB method requires O(1/ϵ)O(1/\epsilon) iterations to obtain an ϵ\epsilon-optimal solution and the ALB algorithm reduces this iteration complexity to O(1/ϵ)O(1/\sqrt{\epsilon}) while requiring almost the same computational effort on each iteration. Numerical results on compressed sensing and matrix completion problems are presented that demonstrate that the ALB method can be significantly faster than the LB method

    Gravity Duals of Lifshitz-like Fixed Points

    Get PDF
    We find candidate macroscopic gravity duals for scale-invariant but non-Lorentz invariant fixed points, which do not have particle number as a conserved quantity. We compute two-point correlation functions which exhibit novel behavior relative to their AdS counterparts, and find holographic renormalization group flows to conformal field theories. Our theories are characterized by a dynamical critical exponent zz, which governs the anisotropy between spatial and temporal scaling tλztt \to \lambda^z t, xλxx \to \lambda x; we focus on the case with z=2z=2. Such theories describe multicritical points in certain magnetic materials and liquid crystals, and have been shown to arise at quantum critical points in toy models of the cuprate superconductors. This work can be considered a small step towards making useful dual descriptions of such critical points.Comment: 17 pages, harvmac; v2 comments about behavior of metric near r=0 added (thanks to S. Hartnoll and G. Horowitz

    Fast Image Recovery Using Variable Splitting and Constrained Optimization

    Full text link
    We propose a new fast algorithm for solving one of the standard formulations of image restoration and reconstruction which consists of an unconstrained optimization problem where the objective includes an 2\ell_2 data-fidelity term and a non-smooth regularizer. This formulation allows both wavelet-based (with orthogonal or frame-based representations) regularization or total-variation regularization. Our approach is based on a variable splitting to obtain an equivalent constrained optimization formulation, which is then addressed with an augmented Lagrangian method. The proposed algorithm is an instance of the so-called "alternating direction method of multipliers", for which convergence has been proved. Experiments on a set of image restoration and reconstruction benchmark problems show that the proposed algorithm is faster than the current state of the art methods.Comment: Submitted; 11 pages, 7 figures, 6 table

    Efficient Linear Programming for Dense CRFs

    Get PDF
    The fully connected conditional random field (CRF) with Gaussian pairwise potentials has proven popular and effective for multi-class semantic segmentation. While the energy of a dense CRF can be minimized accurately using a linear programming (LP) relaxation, the state-of-the-art algorithm is too slow to be useful in practice. To alleviate this deficiency, we introduce an efficient LP minimization algorithm for dense CRFs. To this end, we develop a proximal minimization framework, where the dual of each proximal problem is optimized via block coordinate descent. We show that each block of variables can be efficiently optimized. Specifically, for one block, the problem decomposes into significantly smaller subproblems, each of which is defined over a single pixel. For the other block, the problem is optimized via conditional gradient descent. This has two advantages: 1) the conditional gradient can be computed in a time linear in the number of pixels and labels; and 2) the optimal step size can be computed analytically. Our experiments on standard datasets provide compelling evidence that our approach outperforms all existing baselines including the previous LP based approach for dense CRFs.Comment: 24 pages, 10 figures and 4 table
    corecore