7 research outputs found

    A Zero Attention Model for Personalized Product Search

    Full text link
    Product search is one of the most popular methods for people to discover and purchase products on e-commerce websites. Because personal preferences often have an important influence on the purchase decision of each customer, it is intuitive that personalization should be beneficial for product search engines. While synthetic experiments from previous studies show that purchase histories are useful for identifying the individual intent of each product search session, the effect of personalization on product search in practice, however, remains mostly unknown. In this paper, we formulate the problem of personalized product search and conduct large-scale experiments with search logs sampled from a commercial e-commerce search engine. Results from our preliminary analysis show that the potential of personalization depends on query characteristics, interactions between queries, and user purchase histories. Based on these observations, we propose a Zero Attention Model for product search that automatically determines when and how to personalize a user-query pair via a novel attention mechanism. Empirical results on commercial product search logs show that the proposed model not only significantly outperforms state-of-the-art personalized product retrieval models, but also provides important information on the potential of personalization in each product search session

    A Comparison of Supervised Learning to Match Methods for Product Search

    Get PDF
    The vocabulary gap is a core challenge in information retrieval (IR). In e-commerce applications like product search, the vocabulary gap is reported to be a bigger challenge than in more traditional application areas in IR, such as news search or web search. As recent learning to match methods have made important advances in bridging the vocabulary gap for these traditional IR areas, we investigate their potential in the context of product search. In this paper we provide insights into using recent learning to match methods for product search. We compare both effectiveness and efficiency of these methods in a product search setting and analyze their performance on two product search datasets, with 50,000 queries each. One is an open dataset made available as part of a community benchmark activity at CIKM 2016. The other is a proprietary query log obtained from a European e-commerce platform. This comparison is conducted towards a better understanding of trade-offs in choosing a preferred model for this task. We find that (1) models that have been specifically designed for short text matching, like MV-LSTM and DRMMTKS, are consistently among the top three methods in all experiments; however, taking efficiency and accuracy into account at the same time, ARC-I is the preferred model for real world use cases; and (2) the performance from a state-of-the-art BERT-based model is mediocre, which we attribute to the fact that the text BERT is pre-trained on is very different from the text we have in product search. We also provide insights into factors that can influence model behavior for different types of query, such as the length of retrieved list, and query complexity, and discuss the implications of our findings for e-commerce practitioners, with respect to choosing a well performing method.Comment: 10 pages, 5 figures, Accepted at SIGIR Workshop on eCommerce 202

    Attitudes, behaviors, and learning outcomes from using classtranscribe, a UDL-featured video-based online learning platform with learnersourced text-searchable captions

    Get PDF
    This thesis consisted of a series of three studies on students' attitudes, behaviors, and learning outcomes from using ClassTranscribe, a Universal Design for Learning (UDL) featured video-based online learning platform. ClassTranscribe provided accurate accessible transcriptions and captioning plus a custom text-searchable interface to rapidly find relevant video moments from the entire course. Users could edit the machine-generated captions in a crowdsourcing way. The system logged student viewing, searching, and editing behaviors as fine-grained web browser interaction events including full-screen-switching, loss-of-focus, caption searching and editing events, and continued-video-watching events with the latter at 15-second granularity. In Study I, lecture material of a sophomore large-enrollment (N=271) system programming 15-week class in Spring 2019 was delivered solely online using a new video-based web platform - ClassTranscribe. Student learning behaviors and findings from four research questions were presented using individual-level performance and interaction data. Firstly, we reported on learning outcomes from alternative learning paths that arose from the course's application of Universal Design for Learning principles. Secondly, final exam performance was equal or better to prior semesters that utilized traditional in-person live lectures. Thirdly, learning outcomes of low and high performing students were analyzed independently by grouping students into four quartiles based on their non-final-exam course performance of programming assignments and quizzes. We introduced and justified an empirically-defined qualification threshold for sufficient video minutes viewed for each group. In all quartiles, students who watched an above-threshold of video minutes improved their in-group final exam performance (ranging from +6% to +14%) with the largest gain for the lowest-performing quartile. The improvement was similar in magnitude for all groups when expressed as a fraction of unrewarded final exam points. Finally, we found that using ClassTranscribe caption-based video search significantly predicted improvement in final exam scores. Overall, the study presented and evaluated how learner use of online video using ClassTranscribe predicted course performance and positive learning outcomes. In Study II, we further explored learner's searching behavior, which was shown to be correlated with improved final exam scores in the first study. From Fall 2019 to Summer 2020, engineering students used ClassTranscribe in engineering courses to view course videos and search for video content. The tool collected detailed timestamped student behavioral data from 1,894 students across 25 engineering courses that included what individual students searched for and when. As the first study showed that using ClassTranscribe caption search significantly predicted improvement in final exam scores in a computer science course, in this study, we presented how students used the search functionality based on a more detailed analysis of the log data. The search functionality of ClassTranscribe used the timestamped caption data to find specific video moments both within the current video or across the entire course. The number of search activities per person ranged from zero to 186 events. An in-depth analysis of the students (N=167) who performed 1,022 searches was conducted to gain insight into student search needs and behaviors. Based on the total number of searches performed, students were grouped into “Infrequent Searcher” (< 18 searches) and “Frequent Searcher” (18 to 110 searches) using clustering algorithms. The search queries used by each group were found to follow the Zipf’s Law and were categorized into STEM-related terms, course logistics and others. Our study reported on students’ search context, behaviors, strategies, and optimizations. Using Universal Design for Learning as a foundation, we discussed the implications for educators, designers, and developers who are interested in providing new learning pathways to support and enhance video-based learning environments. In Study III, we investigated students' attitudes towards learnersourced captioning for lecture videos. We deployed ClassTranscribe in a large (N=387) text retrieval and mining course where 58 learners participated in editing captions of 89 lecture videos, and each lecture video was edited by two editors sequentially. In the following semester, 18 editors participated in follow-up interviews to discuss their experience of using and editing captions in the class. Our study showed how students use captions to learn, and shed light on students' attitudes, motivations, and strategies in collaborating with other learners to fix captions in a learnersourced way

    Managing tail latency in large scale information retrieval systems

    Get PDF
    As both the availability of internet access and the prominence of smart devices continue to increase, data is being generated at a rate faster than ever before. This massive increase in data production comes with many challenges, including efficiency concerns for the storage and retrieval of such large-scale data. However, users have grown to expect the sub-second response times that are common in most modern search engines, creating a problem - how can such large amounts of data continue to be served efficiently enough to satisfy end users? This dissertation investigates several issues regarding tail latency in large-scale information retrieval systems. Tail latency corresponds to the high percentile latency that is observed from a system - in the case of search, this latency typically corresponds to how long it takes for a query to be processed. In particular, keeping tail latency as low as possible translates to a good experience for all users, as tail latency is directly related to the worst-case latency and hence, the worst possible user experience. The key idea in targeting tail latency is to move from questions such as &amp;quot;what is the median latency of our search engine?&amp;quot; to questions which more accurately capture user experience such as &amp;quot;how many queries take more than 200ms to return answers?&amp;quot; or &amp;quot;what is the worst case latency that a user may be subject to, and how often might it occur?&amp;quot; While various strategies exist for efficiently processing queries over large textual corpora, prior research has focused almost entirely on improvements to the average processing time or cost of search systems. As a first contribution, we examine some state-of-the-art retrieval algorithms for two popular index organizations, and discuss the trade-offs between them, paying special attention to the notion of tail latency. This research uncovers a number of observations that are subsequently leveraged for improved search efficiency and effectiveness. We then propose and solve a new problem, which involves processing a number of related queries together, known as multi-queries, to yield higher quality search results. We experiment with a number of algorithmic approaches to efficiently process these multi-queries, and report on the cost, efficiency, and effectiveness trade-offs present with each. Ultimately, we find that some solutions yield a low tail latency, and are hence suitable for use in real-time search environments. Finally, we examine how predictive models can be used to improve the tail latency and end-to-end cost of a commonly used multi-stage retrieval architecture without impacting result effectiveness. By combining ideas from numerous areas of information retrieval, we propose a prediction framework which can be used for training and evaluating several efficiency/effectiveness trade-off parameters, resulting in improved trade-offs between cost, result quality, and tail latency
    corecore