67,287 research outputs found

    Preparation and characterization of magnetite (Fe3O4) nanoparticles By Sol-Gel method

    Get PDF
    The magnetite (Fe3O4) nanoparticles were successfully synthesized and annealed under vacuum at different temperature. The Fe3O4 nanoparticles prepared via sol-gel assisted method and annealed at 200-400ºC were characterized by Fourier Transformation Infrared Spectroscopy (FTIR), X-ray Diffraction spectra (XRD), Field Emission Scanning Electron Microscope (FESEM) and Atomic Force Microscopy (AFM). The XRD result indicate the presence of Fe3O4 nanoparticles, and the Scherer`s Formula calculated the mean particles size in range of 2-25 nm. The FESEM result shows that the morphologies of the particles annealed at 400ºC are more spherical and partially agglomerated, while the EDS result indicates the presence of Fe3O4 by showing Fe-O group of elements. AFM analyzed the 3D and roughness of the sample; the Fe3O4 nanoparticles have a minimum diameter of 79.04 nm, which is in agreement with FESEM result. In many cases, the synthesis of Fe3O4 nanoparticles using FeCl3 and FeCl2 has not been achieved, according to some literatures, but this research was able to obtained Fe3O4 nanoparticles base on the characterization results

    Unsupervised Object Discovery and Localization in the Wild: Part-based Matching with Bottom-up Region Proposals

    Get PDF
    This paper addresses unsupervised discovery and localization of dominant objects from a noisy image collection with multiple object classes. The setting of this problem is fully unsupervised, without even image-level annotations or any assumption of a single dominant class. This is far more general than typical colocalization, cosegmentation, or weakly-supervised localization tasks. We tackle the discovery and localization problem using a part-based region matching approach: We use off-the-shelf region proposals to form a set of candidate bounding boxes for objects and object parts. These regions are efficiently matched across images using a probabilistic Hough transform that evaluates the confidence for each candidate correspondence considering both appearance and spatial consistency. Dominant objects are discovered and localized by comparing the scores of candidate regions and selecting those that stand out over other regions containing them. Extensive experimental evaluations on standard benchmarks demonstrate that the proposed approach significantly outperforms the current state of the art in colocalization, and achieves robust object discovery in challenging mixed-class datasets.Comment: CVPR 201
    corecore