2,544 research outputs found

    A Target Coverage Scheduling Scheme Based on Genetic Algorithms in Directional Sensor Networks

    Get PDF
    As a promising tool for monitoring the physical world, directional sensor networks (DSNs) consisting of a large number of directional sensors are attracting increasing attention. As directional sensors in DSNs have limited battery power and restricted angles of sensing range, maximizing the network lifetime while monitoring all the targets in a given area remains a challenge. A major technique to conserve the energy of directional sensors is to use a node wake-up scheduling protocol by which some sensors remain active to provide sensing services, while the others are inactive to conserve their energy. In this paper, we first address a Maximum Set Covers for DSNs (MSCD) problem, which is known to be NP-complete, and present a greedy algorithm-based target coverage scheduling scheme that can solve this problem by heuristics. This scheme is used as a baseline for comparison. We then propose a target coverage scheduling scheme based on a genetic algorithm that can find the optimal cover sets to extend the network lifetime while monitoring all targets by the evolutionary global search technique. To verify and evaluate these schemes, we conducted simulations and showed that the schemes can contribute to extending the network lifetime. Simulation results indicated that the genetic algorithm-based scheduling scheme had better performance than the greedy algorithm-based scheme in terms of maximizing network lifetime

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    Towards Efficient Sensor Placement for Industrial Wireless Sensor Network

    Get PDF
    Industrial Wireless Sensor Network (IWSN) is the recent emergence in wireless technologies that facilitate industrial applications. IWSN constructs a reliable and self-responding industrial system using interconnected intelligent sensors. These sensors continuously monitor and analyze the industrial process to evoke its best performance. Since the sensors are resource-constrained and communicate wirelessly, the excess sensor placement utilizes more energy and also affects the environment. Thus, sensors need to use efficiently to minimize their network traffic and energy utilization. In this paper, we proposed a vertex coloring based optimal sensor placement to determine the minimal sensor requirement for an efficient network

    Solving Target Coverage Problem in Wireless Sensor Network Using Genetic Algorithm

    Get PDF
    The past few years have seen tremendous increase of interest in the field of wireless sensor network. These wireless sensor network comprise numerous small sensor nodes distributed in an area and collect specific data from that area. The nodes comprising a network are mostly battery driven and hence have a limited amount of energy. The target coverage deals with the surveillance of the area under consideration taking into account the energy constraint associated with nodes. In nutshell, the lifetime of the network is to be maximized while ensuring that all the targets are monitored. The approach of segregating the nodes into various covers is used such that each cover can monitor all the targets while other nodes in remaining covers are in sleep state. The covers are scheduled to operate in turn thereby ensuring that the targets are monitored all the time and the lifetime of the network is also maximized. The segregation method is based on Maximum Set Cover (MSC) problem which is transformed into Maximum Disjoint Set Cover problem (MDSC). This problem of finding Maximum Disjoint Set Cover falls under the category of NP-Complete problem. Hence, two heuristics based approach are discussed in this work; first Greedy Heuristic is implemented to be used as baseline. Then a Genetic Algorithm based approach is proposed that can solve this problem by evolutionary global search technique. The existing and proposed algorithms are coded and functionality verified using MATLAB R2010b and performance evaluation and comparisons are made in terms of number of sensors and sensing range

    Learning automata-based solution to target coverage problem for directional sensor networks with adjustable sensing ranges

    Get PDF
    The extensive applications of directional sensor networks (DSNs) in a wide range of situations have attracted a great deal of attention. One significant problem linked with DSNs is target coverage, which primarily operate based on simultaneously observing a group of targets occurring in a set area, hence maximizing the network lifetime. As there are limitations to the directional sensors’ sensing angle and energy resource, designing new techniques for effectively managing the energy consumption of the sensors is crucial. In this study, two problems were addressed. First, a new learning automata-based algorithm is proposed to solve the target coverage problem, in cases where sensors have multiple power levels (i.e., sensors have multiple sensing ranges), by selecting a subset of sensor directions that is able to monitor all the targets. In real applications, targets may have different coverage quality requirements, which leads to the second; the priority-based target coverage problem, which has not yet been investigated in the field of study. In this problem, two newly developed algorithms based on learning automata and greedy are proposed to select a subset of sensor directions in a way that different coverage quality requirements of all the targets could be satisfied. All of the proposed algorithms were assessed for their performances via a number of experiments. In addition, the effect of each algorithm on maximizing network lifetime was also investigated via a comparative study. All algorithms are successful in solving the problems; however, the learning automata-based algorithms are proven to be superior by up to 18% comparing with the greedy-based algorithms, when considering extending the network lifetime

    Drone Base Station Trajectory Management for Optimal Scheduling in LTE-Based Sparse Delay-Sensitive M2M Networks

    Get PDF
    Providing connectivity in areas out of reach of the cellular infrastructure is a very active area of research. This connectivity is particularly needed in case of the deployment of machine type communication devices (MTCDs) for critical purposes such as homeland security. In such applications, MTCDs are deployed in areas that are hard to reach using regular communications infrastructure while the collected data is timely critical. Drone-supported communications constitute a new trend in complementing the reach of the terrestrial communication infrastructure. In this study, drones are used as base stations to provide real-time communication services to gather critical data out of a group of MTCDs that are sparsely deployed in a marine environment. Studying different communication technologies as LTE, WiFi, LPWAN and Free-Space Optical communication (FSOC) incorporated with the drone communications was important in the first phase of this research to identify the best candidate for addressing this need. We have determined the cellular technology, and particularly LTE, to be the most suitable candidate to support such applications. In this case, an LTE base station would be mounted on the drone which will help communicate with the different MTCDs to transmit their data to the network backhaul. We then formulate the problem model mathematically and devise the trajectory planning and scheduling algorithm that decides the drone path and the resulting scheduling. Based on this formulation, we decided to compare between an Ant Colony Optimization (ACO) based technique that optimizes the drone movement among the sparsely-deployed MTCDs and a Genetic Algorithm (GA) based solution that achieves the same purpose. This optimization is based on minimizing the energy cost of the drone movement while ensuring the data transmission deadline missing is minimized. We present the results of several simulation experiments that validate the different performance aspects of the technique

    A Survey on Mobile Charging Techniques in Wireless Rechargeable Sensor Networks

    Get PDF
    The recent breakthrough in wireless power transfer (WPT) technology has empowered wireless rechargeable sensor networks (WRSNs) by facilitating stable and continuous energy supply to sensors through mobile chargers (MCs). A plethora of studies have been carried out over the last decade in this regard. However, no comprehensive survey exists to compile the state-of-the-art literature and provide insight into future research directions. To fill this gap, we put forward a detailed survey on mobile charging techniques (MCTs) in WRSNs. In particular, we first describe the network model, various WPT techniques with empirical models, system design issues and performance metrics concerning the MCTs. Next, we introduce an exhaustive taxonomy of the MCTs based on various design attributes and then review the literature by categorizing it into periodic and on-demand charging techniques. In addition, we compare the state-of-the-art MCTs in terms of objectives, constraints, solution approaches, charging options, design issues, performance metrics, evaluation methods, and limitations. Finally, we highlight some potential directions for future research

    A Trapezoidal Fuzzy Membership Genetic Algorithm (TFMGA) for Energy and Network Lifetime Maximization under Coverage Constrained Problems in Heterogeneous Wireless Sensor Networks

    Get PDF
    Network lifetime maximization of Wireless Heterogeneous Wireless Sensor Networks (HWSNs) is a difficult problem. Though many methods have been introduced and developed in the recent works to solve network lifetime maximization. However, in HWSNs, the energy efficiency of sensor nodes becomes also a very difficult issue. On the other hand target coverage problem have been also becoming most important and difficult problem. In this paper, new Markov Chain Monte Carlo (MCMC) is introduced which solves the energy efficiency of sensor nodes in HWSN. At initially graph model is modeled to represent HWSNs with each vertex representing the assignment of a sensor nodes in a subset. At the same time, Trapezoidal Fuzzy Membership Genetic Algorithm (TFMGA) is proposed to maximize the number of Disjoint Connected Covers (DCC) and K-Coverage (KC) known as TFMGA-MDCCKC. Based on gene and chromosome information from the TFMGA, the gene seeks an optimal path on the construction graph model that maximizes the MDCCKC. In TFMGA gene thus focuses on finding one more connected covers and avoids creating subsets particularly. A local search procedure is designed to TFMGA thus increases the search efficiency. The proposed TFMGA-MDCCKC approach has been applied to a variety of HWSNs. The results show that the TFMGA-MDCCKC approach is efficient and successful in finding optimal results for maximizing the lifetime of HWSNs. Experimental results show that proposed TFMGA-MDCCKC approach performs better than Bacteria Foraging Optimization (BFO) based approach, Ant Colony Optimization (ACO) method and the performance of the TFMGA-MDCCKC approach is closer to the energy-conserving strategy
    corecore