5 research outputs found

    A Target Coverage Scheduling Scheme Based on Genetic Algorithms in Directional Sensor Networks

    Get PDF
    As a promising tool for monitoring the physical world, directional sensor networks (DSNs) consisting of a large number of directional sensors are attracting increasing attention. As directional sensors in DSNs have limited battery power and restricted angles of sensing range, maximizing the network lifetime while monitoring all the targets in a given area remains a challenge. A major technique to conserve the energy of directional sensors is to use a node wake-up scheduling protocol by which some sensors remain active to provide sensing services, while the others are inactive to conserve their energy. In this paper, we first address a Maximum Set Covers for DSNs (MSCD) problem, which is known to be NP-complete, and present a greedy algorithm-based target coverage scheduling scheme that can solve this problem by heuristics. This scheme is used as a baseline for comparison. We then propose a target coverage scheduling scheme based on a genetic algorithm that can find the optimal cover sets to extend the network lifetime while monitoring all targets by the evolutionary global search technique. To verify and evaluate these schemes, we conducted simulations and showed that the schemes can contribute to extending the network lifetime. Simulation results indicated that the genetic algorithm-based scheduling scheme had better performance than the greedy algorithm-based scheme in terms of maximizing network lifetime

    Mobile Sink Node with Discerning Motility Approach for Energy Efficient Delay Sensitive Data Communication over Wireless Sensor Body Area Networks

    Get PDF
    The sensors nearby the static sink drains their energy resources rapidly, since they continuously involve to build routes in Wireless sensor networks, which are between data sources and static sink. Hence, the sensors nearby the sink having limited lifespan, which axing the network lifetime.The mobile-sink strategy that allows the sink to move around the network area to distribute the transmission overhead to multiple sensor nodes. However, the mobile-sink strategy is often tall ordered practice due to the continuous need of establishing routes between source nodes and the mobile sink (MS) at new position occurred due to its random mobility. In regard to above stated argument, this manuscript proposed a novel energy data transmission strategy which is effective for WSN with mobile sink. Unlike the traditional contributions, which relies on mobile sink with random mobility strategies, the proposal defines a discerning path for mobile sink routing between sectioned clusters of the WSN. The proposal of the manuscript titled “Mobile Sink Node with Discerning Motility Approach (MSDMA) for Energy Efficient Data Communication over WBAN”. The method defined in proposed model sections the target network in to multiple geographical clusters and prioritize these clusters by the delay sensitivity of the data transmitted by the sensor nodes of the corresponding clusters. Further, discriminating these clusters by their delay sensitive priority to define mobile sink route. For estimation of the delay sensitive priority of the clusters, set of metrics are proposed. The experimental study carried on simulation to assess the significance of the suggested method. The performance improvement of the suggested method is ascended through comparative analysis performed against benchmark model under divergent metrics

    Solving Target Coverage Problem in Wireless Sensor Network Using Genetic Algorithm

    Get PDF
    The past few years have seen tremendous increase of interest in the field of wireless sensor network. These wireless sensor network comprise numerous small sensor nodes distributed in an area and collect specific data from that area. The nodes comprising a network are mostly battery driven and hence have a limited amount of energy. The target coverage deals with the surveillance of the area under consideration taking into account the energy constraint associated with nodes. In nutshell, the lifetime of the network is to be maximized while ensuring that all the targets are monitored. The approach of segregating the nodes into various covers is used such that each cover can monitor all the targets while other nodes in remaining covers are in sleep state. The covers are scheduled to operate in turn thereby ensuring that the targets are monitored all the time and the lifetime of the network is also maximized. The segregation method is based on Maximum Set Cover (MSC) problem which is transformed into Maximum Disjoint Set Cover problem (MDSC). This problem of finding Maximum Disjoint Set Cover falls under the category of NP-Complete problem. Hence, two heuristics based approach are discussed in this work; first Greedy Heuristic is implemented to be used as baseline. Then a Genetic Algorithm based approach is proposed that can solve this problem by evolutionary global search technique. The existing and proposed algorithms are coded and functionality verified using MATLAB R2010b and performance evaluation and comparisons are made in terms of number of sensors and sensing range

    Solving k

    Get PDF
    Coverage problem is a critical issue in wireless sensor networks for security applications. The k-barrier coverage is an effective measure to ensure robustness. In this paper, we formulate the k-barrier coverage problem as a constrained optimization problem and introduce the energy constraint of sensor node to prolong the lifetime of the k-barrier coverage. A novel hybrid particle swarm optimization and gravitational search algorithm (PGSA) is proposed to solve this problem. The proposed PGSA adopts a k-barrier coverage generation strategy based on probability and integrates the exploitation ability in particle swarm optimization to update the velocity and enhance the global search capability and introduce the boundary mutation strategy of an agent to increase the population diversity and search accuracy. Extensive simulations are conducted to demonstrate the effectiveness of our proposed algorithm

    Distributed Target Engagement in Large-scale Mobile Sensor Networks

    Get PDF
    Sensor networks comprise an emerging field of study that is expected to touch many aspects of our life. Research in this area was originally motivated by military applications. Afterward sensor networks have demonstrated tremendous promise in many other applications such as infrastructure security, environment and habitat monitoring, industrial sensing, traffic control, and surveillance applications. One key challenge in large-scale sensor networks is the efficient use of the network's resources to collect information about objects in a given Volume of Interest (VOI). Multi-sensor Multi-target tracking in surveillance applications is an example where the success of the network to track targets in a given volume of interest, efficiently and effectively, hinges significantly on the network's ability to allocate the right set of sensors to the right set of targets so as to achieve optimal performance. This task can be even more complicated if the surveillance application is such that the sensors and targets are expected to be mobile. To ensure timely tracking of targets in a given volume of interest, the surveillance sensor network needs to maintain engagement with all targets in this volume. Thus the network must be able to perform the following real-time tasks: 1) sensor-to-target allocation; 2) target tracking; 3) sensor mobility control and coordination. In this research I propose a combination of the Semi-Flocking algorithm, as a multi-target motion control and coordination approach, and a hierarchical Distributed Constraint Optimization Problem (DCOP) modelling algorithm, as an allocation approach, to tackle target engagement problem in large-scale mobile multi-target multi-sensor surveillance systems. Sensor-to-target allocation is an NP-hard problem. Thus, for sensor networks to succeed in such application, an efficient approach that can tackle this NP-hard problem in real-time is disparately needed. This research work proposes a novel approach to tackle this issue by modelling the problem as a Hierarchical DCOP. Although DCOPs has been proven to be both general and efficient they tend to be computationally expensive, and often intractable for large-scale problems. To address this challenge, this research proposes to divide the sensor-to-target allocation problem into smaller sub-DCOPs with shared constraints, eliminating significant computational and communication costs. Furthermore, a non-binary variable modelling is presented to reduce the number of inter-agent constraints. Target tracking and sensor mobility control and coordination are the other main challenges in these networks. Biologically inspired approaches have recently gained significant attention as a tool to address this issue. These approaches are exemplified by the two well-known algorithms, namely, the Flocking algorithm and the Anti-Flocking algorithm. Generally speaking, although these two biologically inspired algorithms have demonstrated promising performance, they expose deficiencies when it comes to their ability to maintain simultaneous reliable dynamic area coverage and target coverage. To address this challenge, Semi-Flocking, a biologically inspired algorithm that benefits from key characteristics of both the Flocking and Anti-Flocking algorithms, is proposed. The Semi-Flocking algorithm approaches the problem by assigning a small flock of sensors to each target, while at the same time leaving some sensors free to explore the environment. Also, this thesis presents an extension of the Semi-Flocking in which it is combined with a constrained clustering approach to provide better coverage over maneuverable targets. To have a reliable target tracking, another extension of Semi-Flocking algorithm is presented which is a coupled distributed estimation and motion control algorithm. In this extension the Semi-Flocking algorithm is employed for the purpose of a multi-target motion control, and Kalman-Consensus Filter (KCF) for the purpose of motion estimation. Finally, this research will show that the proposed Hierarchical DCOP algorithm can be elegantly combined with the Semi-Flocking algorithm and its extensions to create a coupled control and allocation approach. Several experimental analysis conducted in this research illustrate how the operation of the proposed algorithms outperforms other approaches in terms of incurred computational and communication costs, area coverage, target coverage for both linear and maneuverable targets, target detection time, number of undetected targets and target coverage in noise conditions sensor network. Also it is illustrated that this algorithmic combination can successfully engage multiple sensors to multiple mobile targets such that the number of uncovered targets is minimized and the sensors' mean utilization factor sensor surveillance systems.is maximized
    corecore