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Coverage problem is a critical issue in wireless sensor networks for security applications. The 𝑘-barrier coverage is an effective
measure to ensure robustness. In this paper, we formulate the 𝑘-barrier coverage problem as a constrained optimization problem
and introduce the energy constraint of sensor node to prolong the lifetime of the 𝑘-barrier coverage. A novel hybrid particle swarm
optimization and gravitational search algorithm (PGSA) is proposed to solve this problem.The proposed PGSA adopts a 𝑘-barrier
coverage generation strategy based on probability and integrates the exploitation ability in particle swarm optimization to update
the velocity and enhance the global search capability and introduce the boundary mutation strategy of an agent to increase the
population diversity and search accuracy. Extensive simulations are conducted to demonstrate the effectiveness of our proposed
algorithm.

1. Introduction

Recently, interest in wireless sensor networks (WSNs) in
numerous applications has increased considerably. The con-
nection of physical things to the Internet makes it possible
to access remote sensor data and to control the physical
world from a distance [1]. This capability is a critical issue
for security applications, such as border surveillance, forest
fires monitoring, and intruding enemy planes detection [2–
6]. Three categories of the coverage problem exist in the
literature [7, 8]: target coverage [9–15], area coverage [16–23],
and barrier coverage [24–30].Unlike the full coverage, barrier
coverage does not necessarily cover the whole region in
the WSNs. Barrier coverage of the WSNs aims to detect
the intruders attempting to cross the regions of interest. It
requires forming a chain of overlapping sensors across the
whole regions of interest from left to right.

In [31], barrier coverage is classified into two categories:
weak barrier coverage and strong barrier coverage. Weak
barrier coverage only requires detecting intruders moving

along congruent crossing paths, and strong barrier coverage
requires detecting intruders with arbitrary moving paths.
Figure 1 shows the two kinds of barrier coverage. In this paper,
we address the barrier coverage formation problem for strong
barrier coverage.

The 𝑘-barrier coverage refers to all crossing paths through
the region that is 𝑘-covered. A crossing path can be covered
by at least 𝑘 distinct sensors [32]. The WSNs are said to be
fault tolerant if they remain functional after a failure of
up to 𝑘 − 1 sensors. Therefore, 𝑘-barrier coverage is an
effective measure to ensure robustness. To achieve 𝑘-barrier
coverage, the 𝑘 disjoint chain of overlapping sensors must be
formulated in the WSNs. However, after the initial random
deployment, in general, the 𝑘-barrier coverage cannot be
satisfied. Recent technological advances in practical mobile
sensors allowed sensor nodes to have the ability to improve
barrier coverage performance after sensor networks had
been deployed. Meanwhile, the development of detection
technology improves the detection level of sensor in WSNs
[33–35].
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Figure 1: Two kinds of barrier coverage.

There are many challenging issues in the 𝑘-barrier cov-
erage because WSNs have their own characteristics [25].
First, there are a large number of sensor nodes in WSNs,
and building large-scale models has always been a technical
difficulty. Second, sensor nodes have limited energy and
processing capacities and are influenced by the surround-
ing environment and irregular terrain. Third, moving the
mobile sensors to build the 𝑘-barrier coverage costs a lot of
energy; therefore, we aim to move the sensor nodes as few
as possible. Considering the above reasons, we study the 𝑘-
barrier coverage problem in hybrid sensor networks, which
consist of both stationary and mobile sensors. After initial
deployment with stationary sensors, barrier coverage gener-
ally cannot be satisfied. In this paper, wemovemobile sensors
to repair barrier gaps and form 𝑘-barrier coverage. In WSNs,
relocating the mobile sensors to repair such gaps requires
considerable energy. An issue to be addressed is ensuring that
the number of relocated sensors is as few as possible. There-
fore, we investigated how to form 𝑘-barrier coverage with a
minimum number of mobile sensors that need to be moved.
In this paper, we formulate the 𝑘-barrier coverage problem as
a constrained optimization problem in large-scale WSNs.

For large-scale constrained optimization problems, the
classical optimization algorithms cannot provide a suitable
solution because the search space is increasing exponentially
with problem size. Many new types of algorithms, such as
intelligence algorithm and heuristic algorithm, have been
proposed. Gravitational search algorithm (GSA) is one of the
latest heuristic optimization algorithms, which is based on
Newton’s law of gravity and mass interactions [36]. GSA has
been proven to have high-quality performance in solving
different optimization problems [37–39]. It can speed up the
solution process by adjusting the accuracy of the search with
gravitational constant. Furthermore, GSA is memoryless and
works efficiently similar to algorithms with memory. How-
ever, in solving complex constrained problems, GSA may
be easily trapped into local optimums. To enhance the global
optimum ability and escape from local optimal solution, a
newly modified GSA called hybrid particle swarm optimiza-
tion and gravitational search algorithm (PGSA) is developed
in this paper. PGSA integrates the ability to exploit in particle
swarm optimization (PSO) with the ability to explore in
GSA to synthesize both algorithms’ strength. In PGSA, the
velocity updating is adjusted to improve the search accuracy,
and agent boundary mutation strategy is introduced to
increase the agent diversity and improve the convergence of
the algorithm significantly. Simulation experiments were per-
formed to evaluate the proposed algorithm performance.The
numerical results demonstrate that the proposed algorithm

provides very remarkable results for solving 𝑘-barrier cover-
age problem.

Our main contributions are summarized as follows:

(i) To the best of our knowledge, we are the first to apply
the GSA algorithm to solve the 𝑘-barrier coverage
problem. At the same time, we are the first to propose
the encoding strategy based on probability and 𝑘-
barrier coverage generation strategy by introducing
the vertex-splitting method.

(ii) We formulate the 𝑘-barrier coverage into constraint
optimization problem and first propose the energy
constraint of sensor node to prolong the lifetime of
the 𝑘-barrier coverage.

(iii) We propose the newly modified GSA (PGSA), which
adjusts the velocity updating by integrating the ability
to exploit in PSO to enhance the global search
capability and introduce agent boundary mutation
strategy to increase population diversity and search
accuracy.

The rest of the paper is organized as follows: in Sec-
tion 2, we briefly introduce the existing related works. In
Section 3, preliminaries and the standard GSA algorithm are
introduced. Section 4 presents our algorithm design. The
simulation and comparison study are presented in Section 5.
Finally, the paper is concluded in Section 6.

2. Related Works

Kumar et al. [31] first defined the notion of 𝑘-barrier coverage
and proposed two notions of barrier coverage in a belt region:
weak barrier coverage and strong barrier coverage. They also
presented a critical condition forweak barrier coverage. Liu et
al. [40] derived critical conditions and presented a solution
for strong barrier coverage when sensor nodes are distributed
according to a Poisson point process. Bereg and Kirkpatrick
[41] studied the redundant properties of 𝑘-barrier coverage
and defined two notions of thickness and resilience. The
thickness of the barrier counts the minimum number of sen-
sor region intersections. The resilience of the barrier counts
the minimum number of sensors whose removal permits a
path with no sensor region intersections. In [42], Zhang et
al. studied strong barrier coverage problem in wireless sensor
networkswith directional sensors.They presented an efficient
centralized algorithm and a distributed algorithm to solve
the barrier coverage problem. Sun et al. [43] proposed a
novel algorithm to solve themultiobjective optimization cov-
erage problem. The novel algorithm improves the quality of
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(b) Weighted barrier graph (WBG)

Figure 2: Deployment and WBG of sensors.

network coverage and extends the life cycle of the network
significantly. In [44], they presented a novel linear program-
ming optimization coverage scheme inWSNs.This algorithm
improves the coverage and network quality of service and
extends the network lifetime effectively. Silvestri and Goss
[45] proposed an autonomous deployment algorithm named
MobiBar to construct 𝑘-barrier coveragewithmobile sensors.
In [46], they studied the question of barrier coverage of a line-
based sensor deployment strategy and concentrated on the
efficiency of improving barrier using sensor mobility. Du
et al. [47]. aim at prolonging the barrier lifetime under a
novel 𝑘-discrete barrier coveragemodel in terms of the sensor
mobility of the mobile sensors participated.

Recently, many evolutionary and heuristic algorithms
have been employed to solve coverage-related problems [48–
59]. Zhang et al. [48] proposed an integer linear program-
ming (ILP) formulation for the barrier coverage problem.
They investigated how mobile sensors can be efficiently
relocated to achieve 𝑘-barrier coverage and construct an
ILP model with a totally unimodular constraint coefficient
matrix to solve the barrier coverage problem. Gupta et al. [53]
proposed a genetic algorithm (GA) to solve the coverage and
connectivity issues in 𝑘-barrier coverage problem. They
attempted to find the potential positions for placing sensor
nodes so that it will fulfill the 𝑘-coverage of the targets and
m-connectivity of the sensor nodes. A learning automata-
based method had been introduced in [54]. They formulated
a barrier coverage model based on stochastic coverage graph
and then proposed a learning automata-basedmethod to find
a near-optimal solution to the stochastic barrier coverage
problem. A neural network algorithm is proposed to solve the
sensor node fault detection issues and coverage problems
in [55]. They presented a dynamic model of WSNs and its
application to sensor node fault detection. Liao et al. [56] used
the ant colony optimization (ACO) algorithm to solve the
coverage problem and maximize the lifetime of the network.
Theymodeled the deployment problem as multiple knapsack
problems and evaluated the improvement of the energy use
problem in sensor networks using the area coverage.The sim-
ulations showed that the algorithm was effective in the cov-
erage problem and could prolong the lifetime of the network.
Huang and Li [57] focused on the problems of the coverage

optimization method based on artificial fish swarm algo-
rithm. They established a mathematical model to solve the
optimization coverage problems and used the artificial fish
swarmalgorithm to search an optimal solution in the solution
space by simulating fish swarm behaviors. Maleki et al. [59]
presented a PSO algorithm to solve the optimized coverage
problem using a hybrid PSO and differential evolution (DE)
in WSNs. The results of the simulation show that PSO algo-
rithm is efficient in the lifetime of the network.

3. Preliminaries and Problem Formulations

3.1. Preliminaries. In this section, some definitions, assump-
tions, and preliminaries for the proposed method to guar-
antee the 𝑘-barrier coverage in the network are introduced.
We assumed that the𝑁 sensors with omnidirectional motion
are randomly deployed in a two-dimensional rectangular belt
area with a size of 𝐿 × 𝑊. The location information of each
sensor can be known through a localization mechanism. We
assume that each mobile sensor can move anywhere in the
belt area without being limited by energy constraints.

Definition 1 (weighted barrier graph (WBG)). Wang et al.
[25] introduced a novel graph model of the weighted barrier
graph (WBG).They definedWBGas a triple ⟨𝑉, 𝐸,𝑊⟩, where
𝑉 is a set of sensors nodes 𝑉 = {𝑠, V1, V2, . . . , V𝑛, 𝑡}. In the
set 𝑉, 𝑠 and 𝑡 are two virtual nodes and correspond to the
original node and definition node, respectively (Figure 2(b)).
𝐸 = 𝑒(𝑢, V), 𝑢, V ∈ 𝑉, is the link from sensor 𝑢 to V. 𝑊 =
{𝑤(𝑢, V)} is the set of weight of each edges. 𝑑(𝑢, V), 𝑢, V ∈ 𝑉,
is the distance between two sensors 𝑢 and V.

Definition 2 (the weight of edges 𝑤(𝑢, V)). We define the
weight of edges 𝑤(𝑢, V) as the minimum number of sensors
that need to be relocated to connect the two vertices. 𝑤(𝑢, V)
can be calculated as follows:

𝑤 (𝑢, V) = ⌈𝑑 (𝑢, V)𝑙𝑟 ⌉ , (1)

where 𝑑(𝑢, V) is the distance between two sensors 𝑢 and V. 𝑙𝑟
is the largest coverage range of a sensor.



4 Mathematical Problems in Engineering

Figure 2(a) shows sensors randomly deployed in the two-
dimensional belt region. Figure 2(b) shows the weighted
barrier graph. In Figure 2(b), each pair of sensors is linked
except 𝑠 and 𝑡. 𝑤(𝐷, 𝐸) = 0 presents that sensors 𝐷 and 𝐸
intersect with each other. 𝑤(𝐶,𝐷) = 2 presents that sensors
𝐶 and𝐷 are disjoint from each other, and two sensors should
be added to repair the barrier gap.

Lemma 3. Any path from the original node 𝑠 to the definition
node 𝑡 on the WBG is a barrier composed of the initially
deployed stationary sensors and mobile sensors. The length of
the barrier is the number of mobile sensors required to form the
barrier coverage.

Proof. Suppose we choose a path from 𝑠 to 𝑡 in WBG and
place the exact number of mobile sensors to fill the gaps of
the path.Then, the initially deployed sensors are connected to
the mobile sensors; therefore, a barrier is formed. The length
of the barrier is equivalent to the sum of the weights on the
path.

To explain better Lemma 3, the path in Figure 2(b) is used
as an example. The length of the path 𝑠 → 𝐶 → 𝐷 → 𝐸 → 𝑡
in Figure 2(b) is 4, which means that 4 mobile sensors are
required to form the barrier along the path. There are three
gaps on the path: 𝑠 → 𝐶, 𝐶 → 𝐷, and𝐸 → 𝑡, which require 1,
2, and 1 mobile sensors to fill, respectively.

Lemma 4. The minimum number of mobile sensors required
to be moved to form the 𝑘 sensor-disjoint barriers is equivalent
to finding the minimum total length of 𝑘-sensors disjoint paths
on the WBG.

Proof. Based on Lemma 3, the length of a barrier is the num-
ber of mobile sensors required to form the barrier coverage.
Therefore, finding the minimum number of mobile sensors
to form the 𝑘 sensor-disjoint barriers is equivalent to finding
the minimum total length of 𝑘-sensors disjoint paths on
the WBG.

3.2. Problem Formulation. Based on Lemma 4, after deploy-
ing the stationary sensors, the problem to find a minimum
number of mobile sensors to form the 𝑘 sensor-disjoint bar-
riers is transformed to find theminimum total length of the 𝑘
sensor-disjoint paths on the WBG. Considering a topology
in WBG, each link is denoted by 𝑤(𝑢, V). Introducing the
variable 𝑦𝑢V𝑙, let 𝑦𝑢V𝑙 = 1 if 𝑤(𝑢, V) is on the 𝑙th barrier;
otherwise, 𝑦𝑢V𝑙 = 0. The problem can be defined as a
constrained optimization problem as follows [48]:

min
𝑘

∑
𝑙=1

∑
(𝑢,V)∈𝐸

𝑤 (𝑢, V) 𝑦𝑢V𝑙

Subject to for 𝑙 = 1, 2, . . . 𝑘, ∀𝑢 ∈ 𝑉.
(2)

∑
{V|(𝑢,V)∈𝐸}

𝑦𝑢V𝑙 − ∑
{V|(V,𝑢)∈𝐸}

𝑦V𝑢𝑙 = 1,

for 𝑢 = 𝑠
(3)

∑
{V|(𝑢,V)∈𝐸}

𝑦𝑢V𝑙 − ∑
{V|(V,𝑢)∈𝐸}

𝑦V𝑢𝑙 = 0,

∀𝑢 ∈ 𝑉 \ {𝑠, 𝑡}
(4)

∑
{V|(𝑢,V)∈𝐸}

𝑦𝑢V𝑙 − ∑
{V|(V,𝑢)∈𝐸}

𝑦V𝑢𝑙 = −1,

for 𝑢 = 𝑡
(5)

𝐸𝑖 ≥ 𝐸min, 𝑖 ∈ 𝑉
𝑦𝑢V𝑙 ∈ {0, 1} , (𝑢, V) ∈ 𝐸 (6)

The objective function of (2) denotes the minimum num-
ber of mobile sensors required to form the sensor-disjoint 𝑘-
barrier coverage. Every sensor-disjoint barrier from a source
node 𝑠 to a destination node 𝑡 should satisfy the constraints
in (3)–(5). As sensor nodes operate on limited battery power,
energy usage is a very important concern inWSNs.When one
of the sensors in the barrier is depleted of energy, the barrier
will be broken. Therefore, when we choose the stationary
sensors to construct the barrier, the energy of each stationary
sensor 𝐸𝑖 must satisfy the constraint of (6), where 𝐸min
denotes the minimum energy at a stationary sensor node
battery for it to be operational.

3.3. GSA Algorithm. GSA is a novel stochastic search algo-
rithm developed by Rashedi et al. [36]. In this paper, a new
optimization algorithm based on the law of gravity and mass
interactions is introduced. In the GSA, agents have been
considered as objects whose performance is measured by
their masses. All these agents attract every other mass with a
force, which is the “gravitational force,” and this force causes
the agents to be attracted by agents with heavier masses.
Specifically, the heaviest agent presents the optimum solution
and other agents will be attracted by it. The GSA can be
considered in a system with𝑁 agents as follows:

𝑋𝑖 = (𝑋1𝑖 , . . . , 𝑋𝑑𝑖 , . . . , 𝑋𝐷𝑖 ) for 𝑖 = 1, 2, . . . , 𝑁, (7)

where 𝑋𝑑𝑖 presents the position of the 𝑖th agent in the 𝑑th
dimension.

At a specific time, the “gravitational force” acts on the 𝑖th
agent from the 𝑗th agent. We can denote this force as follows:

𝐹𝑑𝑖𝑗 (𝑡) = 𝐺 (𝑡)
𝑀𝑝𝑖 (𝑡) × 𝑀𝑎𝑗 (𝑡)

𝑅𝑖𝑗 + 𝜀 × (𝑋𝑑𝑗 (𝑡) − 𝑋𝑑𝑖 (𝑡)) , (8)

where 𝐺(𝑡) is the gravitational constant at the special time 𝑡.
𝑅𝑖𝑗(𝑡) is the Euclidean distance between agents at time 𝑡, and 𝜀
is a small constant to ensure that the value of the denominator
is not zero.𝑀𝑎𝑗 and𝑀𝑝𝑖 are the active gravitational mass of
the 𝑗th agents and the passive gravitational mass of the 𝑖th
agents, respectively.

Based on [36], inGSA, themass of each agent is calculated
after computing the current population fitness. The equality
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Node ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Node probability P1 P2 P3

(a) Agent encoding method based on probability

Node ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Node probability 29 78 19 33 49 28 65 17 6 9 31 22 11 21 38 36 44 48 52

(b) Probabilities of the nodes of the agent

Figure 3: Agent encoding strategy for barrier coverage problem.

Node ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Node probability 29 78 19 33 49 28 65 17 6 9 31 22 11 21 38 36 44 48 52 36 22

201 202 203

Figure 4: Vertex-splitting technique.

of the gravitational and inertial masses has been assumed by
GSA; hence, we can update (9) as follows:

𝑀𝑎𝑖 = 𝑀𝑝𝑖 = 𝑀𝑖𝑖 = 𝑀𝑖
𝑀𝑖 (𝑡) = 𝑚𝑖 (𝑡)

∑𝑛𝑗=1𝑚𝑗 (𝑡) ,
(9)

where𝑚𝑖(𝑡) is measured as

𝑚𝑖 (𝑡) = fit (𝑡) − worst (𝑡)
best (𝑡) − worst (𝑡) . (10)

In (10), fit(𝑡) represents the fitness value of the 𝑖th agent
at time 𝑡. worst(𝑡) and best(𝑡) are given as follows:

best (𝑡) = min
𝑗∈{1,2,...,𝑁}

fit𝑗 (𝑡) (11)

worst (𝑡) = max
𝑗∈{1,2,...,𝑁}

fit𝑗 (𝑡) . (12)

To compute the acceleration of an agent, the total forces
from a set of heavier masses applied on the 𝑖th agent should
be considered based on a combination of the law of gravity
and the second law of Newton [36] on motion:

𝑎𝑑𝑖 (𝑡) = 𝐹𝑑𝑖 (𝑡)
𝑀𝑖 (𝑡) , (13)

where the total force 𝐹𝑑𝑖 (𝑡) applied on the 𝑖th agent could
be calculated as (14), and rand𝑗 is uniform random in the
interval [0, 1].

𝐹𝑑𝑖 (𝑡) =
𝑁

∑
𝑗=1,𝑗 ̸=𝑖

rand𝑗 × 𝐹𝑑𝑖𝑗 (𝑡) . (14)

Furthermore, the next velocity of an agent is calculated as
a fraction of its current velocity added to its acceleration (see
(15)), where rand𝑖 is a random variable in the interval [0, 1]
and can ensure the random characteristic to the GSA.

𝑉𝑑𝑖 (𝑡 + 1) = rand𝑖 × 𝑉𝑑𝑖 (𝑡) + 𝑎𝑑𝑖 (𝑡) . (15)

Finally, the agent’s position could be updated using

𝑋𝑑𝑖 (𝑡 + 1) = 𝑋𝑑𝑖 (𝑡) + 𝑉𝑑𝑖 (𝑡 + 1) . (16)

4. The Proposed Hybrid PSO and GSA
Algorithm (PGSA)

GSA is one of the metaheuristic algorithms that search for
the global optimum in large-scale networks. However, the 𝑘-
barrier coverage problem can be formulated as a constrained
optimization problem for its constraint and particular struc-
ture. Given this issue, it cannot be solved by the GSA for
its own limitations, such as easy trapping into local optima
and slow convergence. Thus, we introduce a new GSA called
PGSA to solve this problem.We discuss the modified steps of
the GSA in following sections subsequently.

4.1. Initial Population

4.1.1. Agent Encoding Strategy. The most difficult problem
in applying GSA to the 𝑘-barrier coverage problem is how
to encode a barrier into an agent in GSA. We investigated
relevant studies and proposed the agent encoding method
based on the probability for the barrier coverage problem
as follows. Figure 3 illustrates the agent encoding strategy.
Each node in the agent represents a sensor. We assume
that 20 sensors of the agent are randomly deployed in the
monitoring area, and nodes 1 and 20 are the original node and
definition node, respectively. In Figure 3(a), {𝑃1, 𝑃2, 𝑃3, . . .}
are the probabilities of the nodes to be chosen to generate
the barrier, which are randomly generated in [1, 100]. Given
that each barrier starts with the initial node, the selection
probability is not set for the initial node.

4.1.2. Vertex-Splitting Technique. To construct the 𝑘-barrier
coverage, we introduce the vertex-splitting technique. We
split the destination node 𝑡 into 𝑘 splitting node, that is,
{𝑡1, 𝑡2, . . . , 𝑡𝑘}. Then, we generate the probability value of
the splitting t, {𝑃1, 𝑃2, . . . , 𝑃𝑘}. As shown in Figure 4, we
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Node ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Node probability 29 78 19 33 49 28 65 17 6 9 31 10 11 21 38 30 44 48 52 36 22

201 202 203

(a) Barrier 1: 1 → 3 → 8 → 201

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

29 19 33 49 28 17 6 9 31 10 11 21 38 30 44 48 36 22

Node ID

Node probability

201 202 203

(b) Barrier 2: 1 → 6 → 19 → 18 → 16 → 202
Node ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Node probability 29 19 33 28 17 6 9 31 10 11 21 30 22

201 202 203

(c) Barrier 3: 1 → 12 → 17 → 2 → 7 → 203

Figure 5: Agent 𝑘-barrier coverage generation.

split the destination node 20 into 3 splitting nodes, that
is, {201, 202, 203}, and generate the probability value of the
splitting node 20, {52, 36, 22}.

4.1.3. Barrier Coverage Generation Strategy. The barrier is
constructed by the node selecting strategy beginning with the
source node and terminating at the destination node. Nodes
with high probability are selected in turn until reaching the
destination. In Figure 3(b), the node with maximum proba-
bility, that is, node 3 (probability value is 78), is selected to
be added to the barrier. Then, node 3 is removed from
Figure 3(b) and node 8 is selected for its highest probability.
The steps are repeated until destination node 20 is reached;
then, a complete barrier {1 → 3 → 8 → 20} is obtained.

4.1.4. 𝑘-Barrier Coverage Generation Strategy. To construct
the 𝑘-barrier coverage, we first split the destination node
𝑡 into 𝑘 splitting node using the vertex-splitting technique
in Section 4.1.2. Second, we construct the 𝑘-barrier cover-
age using the barrier coverage generation strategy in Sec-
tion 4.1.4.

To explain further the 𝑘-barrier coverage generation
strategy, consider the 3-barrier coverage of the agent in
Figure 5 as an example. Using the barrier coverage generation
strategy, the node with maximum probability, that is, node 3
(probability value is 78), is selected to be added to barrier 1.
Then, node 3 is removed from Figure 5(a) and node 8 is
selected for its highest probability.The steps are repeated until
the destination node 201 is reached.Then, barrier 1 {1 → 3 →
8 → 201} is obtained. After constructing barrier 1, node 3,
node 8, and node 201 are already removed from Figure 5(b).
Repeating the steps in constructing barrier 1, the node with
maximumprobability, that is, node 6 (probability value is 49),
is selected to be added to barrier 2 in Figure 5(b). Then, node
6 is removed from Figure 5(b) and node 19 is selected for
its highest probability. The steps are repeated until the
destination node 202 is reached. Then, barrier 2 {1 → 6 →
19 → 18 → 16 → 202} is constructed. In the same manner,
in Figure 5(c), barrier 3 {1 → 12 → 17 → 2 → 7 → 203} is
constructed by the node selecting strategy, beginningwith the
source node 1 and terminating at the destination node 203.

4.2. Fitness Function. The length of the 𝑘-barrier can be used
as the fitness function, where the smaller the total length
of the 𝑘-barrier coverage, the better the solution. Considering
themodel ofWBG, each link is denoted by𝑤(𝑢, V). Introduc-
ing the variable 𝑦𝑢V𝑙, let 𝑦𝑢V𝑙 = 1 if𝑤(𝑢, V) is on the 𝑙th barrier;
otherwise, 𝑦𝑢V𝑙 = 0. The fitness function can be calculated as
follows:

fit =
𝑘

∑
𝑙=1

∑
(𝑢,V)∈𝐸

𝑤 (𝑢, V) 𝑦𝑢V𝑙. (17)

The fitness function (17) denotes that the smaller the
fitness value, the less the number of sensors needed to
relocate, the better the solution.

4.3. Gravitational Constant. The gravitational constant 𝐺(𝑡)
is a function of the initial value (𝐺0) and decreases as time
passes. 𝐺(𝑡) is formulated as follows:

𝐺 (𝑡) = 𝐺0 (𝑒−𝛽(𝑡/𝑇)) , (18)

where 𝐺0 and 𝛽 are constant values, and 𝐺0 and 𝛽 are set
to 100 and 20, respectively. 𝑇 and 𝑡 are the current and total
number of iterations.

4.4. Updating the Agent’s Velocity. In solving complex prob-
lems, GSA may be easily trapped into local optima. To
enhance the global optimum ability to escape from the local
optimal solution, the idea of saving previous local optimum
solution and global optimum solution from PSO is adopted
into GSA. Our 𝑘-barrier coverage problem uses a new set of
equations for updating the agent velocities. Therefore, (15)
is modified as (19). Where 𝑐1 and 𝑐2 are positive constants,
𝑐1 adjusts the step-size of the particle flying to local optimal
position and 𝑐2 adjusts the step-size of the particle flying to
global optimum position; 𝑝𝑏𝑒𝑠𝑡𝑖 and 𝑔𝑏𝑒𝑠𝑡 represent the
best previous position of the 𝑖th agent and the best previous
position among all particles in the population, respectively.
The hybrid PSO and GSA algorithm combine the local
search ability of GSA with the social thinking ability of
PSO. Through the simulation and comparative performance
evaluation in Section 5, we can conclude that the hybrid algo-
rithm successfully escapes from the local optimal solution
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and obtain a solution close to the global optimum in the large-
scale WSNs.

𝑉𝑑𝑖 (𝑡 + 1) = rand0 × 𝑉𝑑𝑖 (𝑡) + 𝑐1 × rand1

× (𝑝𝑏𝑒𝑠𝑡𝑑𝑖 (𝑡) − 𝑥𝑑𝑖 (𝑡))
+ 𝑐2rand2 (𝑔𝑏𝑒𝑠𝑡𝑑 (𝑡) − 𝑥𝑑𝑖 (𝑡)) + 𝑎𝑑𝑖 (𝑡) .

(19)

4.5. Agent Boundary Mutation. GSA is an optimization
method based onNewton’s second law; therefore, the position
of the agent may be beyond the scope of [𝑥min, 𝑥max]. In these
circumstances, the GSA will force the agent to be pulled back
to its boundaries at 𝑥 = 𝑥min or 𝑥 = 𝑥max. However, the
final optimal results will be skewed. To solve this problem, we
introduce the boundary mutation strategy in the PGSA. The
mutation strategy can be described as follows:

if 𝑥𝑖 ≥ 𝑥max

or𝑥𝑖 ≤ 𝑥min,
then 𝑥𝑖 = rand𝑖 × (𝑥max − 𝑥min) + 𝑥min.

(20)

After boundary mutation, the agent beyond the bound-
aries is pulled back to the feasible range of [𝑥min, 𝑥max].
Through the simulation and comparative performance in
Section 5, we can prove that the boundary mutation strategy
can increase the agent diversity and improve the convergence
of the algorithm significantly.

4.6. Termination Condition. In GSA, the maximum number
of iterations is a condition of the termination. However, in
some cases, GSA could not improve the optimal value. To
solve the problem, we employ a termination condition to
terminate the algorithm in advance. If the algorithm could
not get its optimum for a large number of stages (𝜃), the algo-
rithmmay be subject to early termination. We determine the
variable 𝜃 by trial and error. If we select min_ineration/10 ≤
𝜃 ≤ max_ineration/5, then, the performance of the algorithm
is optimal.

4.7. Proposed Algorithm Description. The algorithm of PGSA
is described as follows.

Step 1 (initialization). The initial population size is 𝑁 = 50,
then the maximum iterate number is max_iteration = 500,
and min_iteration = 200. The initial gravitational constant is
𝐺0 = 100 and 𝛽 = 20. Remove sensor nodes with energy less
than 𝐸min.

Step 2 (initial population). First, randomly generate a group
of agents at a size of 50, with each node in the agent
representing the location of a sensor. Randomly generate
the sensors probabilities in the range [1, 100]. Second, split
the destination node 𝑡 into 𝑘 splitting node, and assign the
probability value to the splitting node of each agent. Third,
construct the 𝑘-barrier coverage using the strategy in Sec-
tion 4.1.4.

Step 3 (fitness). Evaluate the fitness for each agent by (17).

Step 4 (constant 𝐺). Update the gravitational constant 𝐺 by
(18).

Step 5 (best solution and worst solution). Update the best
solution and the worst solution of the population by (11) and
(12), respectively.

Step 6 (mass). Calculate the mass for each agent by (6).

Step 7 (acceleration). Calculate the acceleration for each
agent by (13).

Step 8 (velocity). Update the velocity for each agent by (19).

Step 9 (position). Update the position for each agent by (16).

Step 10 (termination). If max_iteration or termination con-
dition is reached, then return the solution; otherwise, Steps
3–9 are repeated.

4.8. 𝑘-Barrier Coverage with Minimum Cost Problem
(KCMC). Through the solution of the PGSA algorithm, we
obtain the minimum number and target location of the mo-
bile sensor to be moved to fill the gaps. The KCMC problem
mainly involves determining how tomove themobile sensors
to the target locations at theminimumcost.TheKCMCprob-
lem could be formulated as a 0-1 ILP and solved rapidly by
commercial quality CPLEX package in [48].

5. Performance Evaluation

In this section, we conduct extensive experiments to evaluate
and testify the proposed algorithms (PGSA). The sensors are
randomly deployed in a belt region of 𝐿 = 100m and 𝑊 =
20m.The largest range of the sensor is 𝑙𝑟 = 2. The maximum
iteration number is 500, the number of agents (𝑁) is 50, and
the initial gravitational constant (𝐺0) is 100. The constant is
𝛽 = 20. The algorithm was conducted with MATBLAB 2009
and implemented on a CPU with an Intel Corei9, 3.06GHz,
and 4GB RAM running on windows 7.

In this paper, PGSA and GSA are compared to verify
whether the PGSA can overcome the shortcomings of tradi-
tional GSA and escape from a local optimum effectively.

The PGSA is proposed to find the approximate optimal
solution in a short time. Therefore, the evaluation mainly
focuses on two performance metrics: running time and the
optimal value of the PGSA. GSA is one of the latest heuristic
optimization algorithms, and it has been proven that GSAhas
high-quality time performance in solving different optimiza-
tion problems [37–39]. PGSA is amodified algorithmofGSA;
therefore, we compare the average iteration times of PGSA
and GSA to verify the time performance of the PGSA. When
evaluating the performance of the optimal value, we compare
the optimal value of the PGSA with that of RSMN. RSMN is
an efficient algorithm for 𝑘-barrier coverage based on optimal
value [48], and it gets the optimal value but is not suitable for



8 Mathematical Problems in Engineering

Table 1: Comparison of statistical results between GSA and PGSA.

Metrics
GSA PGSA

Optimal number of
mobile sensors Average iteration

number

Optimal number of
mobile sensors Average iteration

number
Best Worst Average Best Worst Average

𝐿 = 100m,
𝑊 = 20m,
𝑙𝑟 = 20,𝑁 = 50,
𝐺0 = 100

𝑛 = 200, 𝑘 = 4 57 98 73 262 40 69 49 115
𝑛 = 150, 𝑘 = 4 78 121 94 278 53 82 62 123
𝑛 = 120, 𝑘 = 3 45 83 65 235 34 62 45 98
𝑛 = 100, 𝑘 = 3 42 79 58 251 29 58 38 105
𝑛 = 80, 𝑘 = 2 44 76 59 217 30 56 39 94
𝑛 = 60, 𝑘 = 2 48 84 63 223 32 62 44 107

Table 2: Comparison of statistical results on different number of barriers (𝑘).

Metrics Barrier number
RSMN PGSA

Optimal number of
mobile sensors Running time (s) Optimal number

of mobile sensors Running time (s)

𝐿 = 100m
𝑊 = 20m
𝑛 = 100
𝑙𝑟 = 2𝑁 = 50
𝐺0 = 100

𝑘 = 2 26 4.84 26 2.08
𝑘 = 3 29 38.18 29 2.12
𝑘 = 4 37 69.36 41 2.14
𝑘 = 5 65 112.44 72 2.33
𝑘 = 6 79 171.2 88 2.76

large-scale networks.Therefore, we evaluate the performance
of the optimal value by comparing two algorithms.

The comparison results of GSA and PGSA are given in
Table 1. We generate six random datasets with 200, 150, 120,
100, 80, and 60 nodes and 4, 3, and 2 barriers. For all six
test datasets, the best, the worst, and average solutions are
gained among 20 independent runs. In addition, the average
iteration number was also reported.

From the numerical results, PGSA performs better with
respect to the best, the worst, the average solutions, and
average iteration number compared to GSA.The results show
that PGSA can explore the search space more effectively and
overcome the premature convergence.

Figure 6 plots the comparison of convergence curve with
𝑛 = 120 and 𝑘 = 3 between PGSA and GSA. GSA converges
to optimal solution 68 at iteration 230, while PGSA converges
to 37 at iteration 92. The result shows superior performance
of PGSA over that of GSA. The average iteration number of
PGSA is less than that of the GSA algorithm, and the time
performance of the algorithm is greatly improved.

To verify further the performance of PGSA,we compare it
with RSMN algorithm. In the RSMN algorithm, the 𝑘-barrier
coverage problem was formulated as a 0-1 ILP, and then the
commercial software, such as CPLEX or Lingo, was used to
solve the problem directly.

Table 2 and Figure 7 show the performance of PGSA and
RSMN on a different number of barriers. Figure 7(a) shows
the comparison of the average running time of the two algo-
rithms.With the increase of the barriers, the average running
time of the two algorithms also increases. Figure 7(a) shows
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GSA
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Figure 6: Comparison of convergence curve between GSA and
PGSA (𝑛 = 120, 𝑘 = 3).

that the PGSA algorithm increases gradually and smoothly.
However, the RSMN algorithm increases remarkably. The
numerical results show that PGSA has better time perfor-
mance than the RSMNalgorithmwith the increase of the bar-
rier number. Figure 7(b) shows a comparison of the optimal
values obtained by the two algorithms. The results show that
some optimal values are the same, whereas others are just
close.The PGSA algorithm obtains the near-optimal solution
in a very short amount of time and, in some cases, obtains the
optimal solution.

Figure 8 and Table 3 show the optimal value and the
average running time against the number of sensor nodes. In
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Figure 7: Comparison of average running time and optimal number of mobile sensors.
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Figure 8: Comparison of average running time and optimal number of mobile sensors on different number of sensors.

Figure 8(a), we compare the average running time of the two
algorithms. The average running time for PGSA is worse
when the number of sensors is less than 80. However, with
the increase of scale, PGSAperforms better thanRSMN.With
an increase in the number of nodes, the average running time
of both algorithms also increases. However, the increase rate
of PGSA is far less than RSMN. The average running time
of PGSA was not significantly affected by the number of
sensor nodes. Figure 8(b) shows the comparison of the opti-
mal values obtained by the two algorithms. The results show

that the optimal values of the two algorithms are the same in
some cases and close in others.

6. Conclusion

In this paper, we investigated the GSA measures for con-
structing the 𝑘-barrier coverage, which is aimed to detect
intruders attempting to cross the regions of interest with at
least 𝑘 distinct sensors. By proposing a newmethod based on
GSA, many problems of the previous studies, such as finding
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Table 3: Comparison of statistical results on different number of sensors (𝑛).

Metrics Sensor number
RSMN PGSA

Optimal number
of mobile sensors Running time (s) Optimal number

of mobile sensors Running time (s)

𝐿 = 100m
𝑊 = 20m
𝑘 = 2
𝑙𝑟 = 2𝑁 = 50
𝐺0 = 100

𝑛 = 20 42 0.042 42 0.778
𝑛 = 40 39 0.08 41 0.907
𝑛 = 60 32 0.289 32 1.098
𝑛 = 80 30 0.51 30 1.29
𝑛 = 100 26 1.887 28 1.569
𝑛 = 120 21 4.009 25 1.761
𝑛 = 140 19 9.557 25 2.157
𝑛 = 160 16 18.458 19 2.263
𝑛 = 180 13 31.089 14 2.362
𝑛 = 200 10 53.886 15 2.639
𝑛 = 220 8 74.892 12 2.667
𝑛 = 240 7 108.045 13 2.991
𝑛 = 260 5 151.594 8 3.31

an inaccurate solution or the unreasonably low speed, are
solved. Finally, we obtained a solution close to the global
optimum in a short period and successfully applied the GSA
algorithm to the WSNs.
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