30 research outputs found

    Evaluating Erasure Codes in Dicoogle PACS

    Get PDF
    DICOM (Digital Imaging and Communication in Medicine) is a standard for image and data transmission in medical purpose hardware and is commonly used for viewing, storing, printing and transmitting images. As a part of the way that DICOM transmits files, the PACS (Picture Archiving and Communication System) platform, Dicoogle, has become one of the most in-demand image processing and viewing platforms. However, the Dicoogle PACS architecture does not guarantee image information recovery in the case of information loss. Therefore, this paper proposes a file recovery solution in the Dicoogle architecture. The proposal consists of maximizing the encoding and decoding performance of medical images through computational parallelism. To validate the proposal, the Java programming language based on the Reed-Solomon algorithm is implemented in different performance tests. The experimental results show that the proposal is optimal in terms of image processing time for the Dicoogle PACS storage system.Ministry of Science, Innovation and Universities (MICINN) of Spain PGC2018 098883-B-C44European CommissionPrograma para el Desarrollo Profesional Docente para el Tipo Superior (PRODEP) of MexicoCorporacion Ecuatoriana para el Desarrollo de la Investigacion y la Academia (CEDIA) of Ecuador CEPRA XII-2018-13Universidad de Las Americas (UDLA), Quito, Ecuador IEA.WHP.21.0

    Network Traffic Driven Storage Repair

    Full text link
    Recently we constructed an explicit family of locally repairable and locally regenerating codes. Their existence was proven by Kamath et al. but no explicit construction was given. Our design is based on HashTag codes that can have different sub-packetization levels. In this work we emphasize the importance of having two ways to repair a node: repair only with local parity nodes or repair with both local and global parity nodes. We say that the repair strategy is network traffic driven since it is in connection with the concrete system and code parameters: the repair bandwidth of the code, the number of I/O operations, the access time for the contacted parts and the size of the stored file. We show the benefits of having repair duality in one practical example implemented in Hadoop. We also give algorithms for efficient repair of the global parity nodes.Comment: arXiv admin note: text overlap with arXiv:1701.0666

    RAID Organizations for Improved Reliability and Performance: A Not Entirely Unbiased Tutorial (1st revision)

    Full text link
    RAID proposal advocated replacing large disks with arrays of PC disks, but as the capacity of small disks increased 100-fold in 1990s the production of large disks was discontinued. Storage dependability is increased via replication or erasure coding. Cloud storage providers store multiple copies of data obviating for need for further redundancy. Varitaions of RAID based on local recovery codes, partial MDS reduce recovery cost. NAND flash Solid State Disks - SSDs have low latency and high bandwidth, are more reliable, consume less power and have a lower TCO than Hard Disk Drives, which are more viable for hyperscalers.Comment: Submitted to ACM Computing Surveys. arXiv admin note: substantial text overlap with arXiv:2306.0876
    corecore