892 research outputs found

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Automated Synthesis of Tableau Calculi

    Full text link
    This paper presents a method for synthesising sound and complete tableau calculi. Given a specification of the formal semantics of a logic, the method generates a set of tableau inference rules that can then be used to reason within the logic. The method guarantees that the generated rules form a calculus which is sound and constructively complete. If the logic can be shown to admit finite filtration with respect to a well-defined first-order semantics then adding a general blocking mechanism provides a terminating tableau calculus. The process of generating tableau rules can be completely automated and produces, together with the blocking mechanism, an automated procedure for generating tableau decision procedures. For illustration we show the workability of the approach for a description logic with transitive roles and propositional intuitionistic logic.Comment: 32 page

    Proceedings of the Joint Automated Reasoning Workshop and Deduktionstreffen: As part of the Vienna Summer of Logic – IJCAR 23-24 July 2014

    Get PDF
    Preface For many years the British and the German automated reasoning communities have successfully run independent series of workshops for anybody working in the area of automated reasoning. Although open to the general public they addressed in the past primarily the British and the German communities, respectively. At the occasion of the Vienna Summer of Logic the two series have a joint event in Vienna as an IJCAR workshop. In the spirit of the two series there will be only informal proceedings with abstracts of the works presented. These are collected in this document. We have tried to maintain the informal open atmosphere of the two series and have welcomed in particular research students to present their work. We have solicited for all work related to automated reasoning and its applications with a particular interest in work-in-progress and the presentation of half-baked ideas. As in the previous years, we have aimed to bring together researchers from all areas of automated reasoning in order to foster links among researchers from various disciplines; among theoreticians, implementers and users alike, and among international communities, this year not just the British and German communities

    Validating specifications of dynamic systems using automated reasoning techniques

    Get PDF
    In this paper, we propose a new approach to validating formal specifications of observable behavior of discrete dynamic systems. By observable behavior we mean system behavior as observed by users or other systems in the environment of the system. Validation of a formal specification of an informal domain tries to answer the question whether the specification actually describes the intended domain. This differs from the verification problem, which deals with the correspondence between formal objects, e.g. between a formal specification of a system and an implementation of it. We consider formal specifications of object-oriented dynamic systems that are subject to static and dynamic integrity constraints. To validate that such a specification expresses the intended behavior, we propose to use a tool that can answer reachability queries. In a reachability query we ask whether the system can evolve from one state into another without violating the integrity constraints. If the query is answered positively, the system should exhibit an example path between the states; if the answer is negative, the system should explain why this is so. An example path produced by the tool can be used to produce scenarios for presentations of system behavior, but can also be used as a basis for acceptance testing. In this paper, we discuss the use of planning and theoremproving techniques to answer such queries, and illustrate the use of reachability queries in the context of information system development

    Minimal Proof Search for Modal Logic K Model Checking

    Full text link
    Most modal logics such as S5, LTL, or ATL are extensions of Modal Logic K. While the model checking problems for LTL and to a lesser extent ATL have been very active research areas for the past decades, the model checking problem for the more basic Multi-agent Modal Logic K (MMLK) has important applications as a formal framework for perfect information multi-player games on its own. We present Minimal Proof Search (MPS), an effort number based algorithm solving the model checking problem for MMLK. We prove two important properties for MPS beyond its correctness. The (dis)proof exhibited by MPS is of minimal cost for a general definition of cost, and MPS is an optimal algorithm for finding (dis)proofs of minimal cost. Optimality means that any comparable algorithm either needs to explore a bigger or equal state space than MPS, or is not guaranteed to find a (dis)proof of minimal cost on every input. As such, our work relates to A* and AO* in heuristic search, to Proof Number Search and DFPN+ in two-player games, and to counterexample minimization in software model checking.Comment: Extended version of the JELIA 2012 paper with the same titl

    Hypertableau Reasoning for Description Logics

    Full text link
    We present a novel reasoning calculus for the description logic SHOIQ^+---a knowledge representation formalism with applications in areas such as the Semantic Web. Unnecessary nondeterminism and the construction of large models are two primary sources of inefficiency in the tableau-based reasoning calculi used in state-of-the-art reasoners. In order to reduce nondeterminism, we base our calculus on hypertableau and hyperresolution calculi, which we extend with a blocking condition to ensure termination. In order to reduce the size of the constructed models, we introduce anywhere pairwise blocking. We also present an improved nominal introduction rule that ensures termination in the presence of nominals, inverse roles, and number restrictions---a combination of DL constructs that has proven notoriously difficult to handle. Our implementation shows significant performance improvements over state-of-the-art reasoners on several well-known ontologies

    Completeness of Flat Coalgebraic Fixpoint Logics

    Full text link
    Modal fixpoint logics traditionally play a central role in computer science, in particular in artificial intelligence and concurrency. The mu-calculus and its relatives are among the most expressive logics of this type. However, popular fixpoint logics tend to trade expressivity for simplicity and readability, and in fact often live within the single variable fragment of the mu-calculus. The family of such flat fixpoint logics includes, e.g., LTL, CTL, and the logic of common knowledge. Extending this notion to the generic semantic framework of coalgebraic logic enables covering a wide range of logics beyond the standard mu-calculus including, e.g., flat fragments of the graded mu-calculus and the alternating-time mu-calculus (such as alternating-time temporal logic ATL), as well as probabilistic and monotone fixpoint logics. We give a generic proof of completeness of the Kozen-Park axiomatization for such flat coalgebraic fixpoint logics.Comment: Short version appeared in Proc. 21st International Conference on Concurrency Theory, CONCUR 2010, Vol. 6269 of Lecture Notes in Computer Science, Springer, 2010, pp. 524-53
    corecore