132 research outputs found

    Optimization and Performance Analysis of High Speed Mobile Access Networks

    Get PDF
    The end-to-end performance evaluation of high speed broadband mobile access networks is the main focus of this work. Novel transport network adaptive flow control and enhanced congestion control algorithms are proposed, implemented, tested and validated using a comprehensive High speed packet Access (HSPA) system simulator. The simulation analysis confirms that the aforementioned algorithms are able to provide reliable and guaranteed services for both network operators and end users cost-effectively. Further, two novel analytical models one for congestion control and the other for the combined flow control and congestion control which are based on Markov chains are designed and developed to perform the aforementioned analysis efficiently compared to time consuming detailed system simulations. In addition, the effects of the Long Term Evolution (LTE) transport network (S1and X2 interfaces) on the end user performance are investigated and analysed by introducing a novel comprehensive MAC scheduling scheme and a novel transport service differentiation model

    Communication Technologies Support to Railway Infrastructure and Operations

    Get PDF

    3GPP Long Term Evolution: Architecture, Protocols and Interfaces

    Get PDF
    The evolution of wireless networks is a continuous phenomenon. Some key trends in this changing process include: reduced latency, increased performance with substantial reduction in costs, and seamless mobility. Long Term Evolution (LTE) is based on an evolved architecture that makes it a candidate of choice for next generation wireless mobile networks. This paper provides an overview of both the core and access networks of LTE. Functional details of the associated protocols and interfaces are also presented

    The quality of service of the deployed LTE technology by mobile network operators in Abuja-Nigeria

    Get PDF
    In this study, the real-world performance analysis of four Nigerian mobile network operators (MNOs), namely MTN, GLO, Airtel, and 9Mobile long-term evolution (LTE) cellular network, were analyzed and compared. The Nigerian MNOs utilize 5 MHz, 10 MH, and 20 MHz channel bandwidths based on third-generation partnership project’s (3 GPPs) recommendation. The presented analysis shows the uplink (UL), and downlink (DL) throughputs gaps in mobility condition as well as other LTE’s system quality of service (QoS) key performance indicators (KPI’s) of: Connection drop rate, connection failure rate, peak physical downlink throughput, minimum radio link control (RLC) downlink throughput threshold and latency are not strictly followed. The reason may be due to a lack of regulatory oversight enforcement. The comparative studies showed that MTN provides the best QoS. The introduction of novel LTE QoS metrics herein referred to as national independent wireless broadband quality reporting (NIWBQR) is the significant contribution of this study. The goal of this study is to show the quality of the network as it affects the user's experience. Important observation showed that all the MNOs are not adhering to the 3 GPPs specified user plane latency of 30 ms and control plane latency of 100 ms, respectively, which makes video streaming and low latency communication a near-impossible task

    End-to-end key performance indicators in cellular networks

    Get PDF
    Masteroppgave i informasjons- og kommunikasjonsteknologi 2006 - Høgskolen i Agder, GrimstadThe continuing growth of customers taking advantage of the available services means greater load on the cellular network. Optimization is the key to ensure that the network can provide a reasonable level of service-quality. Service providers want to examine their network and be assured that their network is performing well. Teleca Wireless Solutions is a company that does this for service providers, and an end-toend test tool could be proven useful to examine the cellular networks overall performance from an end users point of view. To ensure that one has a tool that does this in an appropriate way, one must ensure, the application is based on testing the right key performance indicators for relevant services. Such services may be popular services like FTP and WEB. In this thesis, we have researched what affects the end users performance and performed practical end-to-end performance tests in cellular networks. Our goal is to define which key performance indicators are affecting the network’s performance at different network layers and for different services. We have paid special attendance to the high latency of the wireless links, and the delay introduced with the radio access bearer establishment. By measurements we have shown that the 3rd generation cellular network UMTS not surprisingly outperforms EDGE regarding commonly used services like HTTP/WEB and FTP. We have discovered that while TCP throughput is good when transferring large files over FTP, the high latency of the wireless link makes the HTTP performance bad compared to potential TCP throughput. Our work has concluded with which key performance indicators an end-to-end test application should measure for services as HTTP and FTP, to give an overall view of the cellular network’s performance. We have proposed enhancements to an already existing end-to-end test tool

    Performance Comparison of Dual Connectivity and Hard Handover for LTE-5G Tight Integration in mmWave Cellular Networks

    Get PDF
    MmWave communications are expected to play a major role in the Fifth generation of mobile networks. They offer a potential multi-gigabit throughput and an ultra-low radio latency, but at the same time suffer from high isotropic pathloss, and a coverage area much smaller than the one of LTE macrocells. In order to address these issues, highly directional beamforming and a very high-density deployment of mmWave base stations were proposed. This Thesis aims to improve the reliability and performance of the 5G network by studying its tight and seamless integration with the current LTE cellular network. In particular, the LTE base stations can provide a coverage layer for 5G mobile terminals, because they operate on microWave frequencies, which are less sensitive to blockage and have a lower pathloss. This document is a copy of the Master's Thesis carried out by Mr. Michele Polese under the supervision of Dr. Marco Mezzavilla and Prof. Michele Zorzi. It will propose an LTE-5G tight integration architecture, based on mobile terminals' dual connectivity to LTE and 5G radio access networks, and will evaluate which are the new network procedures that will be needed to support it. Moreover, this new architecture will be implemented in the ns-3 simulator, and a thorough simulation campaign will be conducted in order to evaluate its performance, with respect to the baseline of handover between LTE and 5G.Comment: Master's Thesis carried out by Mr. Michele Polese under the supervision of Dr. Marco Mezzavilla and Prof. Michele Zorz

    Quality of service optimization of multimedia traffic in mobile networks

    Get PDF
    Mobile communication systems have continued to evolve beyond the currently deployed Third Generation (3G) systems with the main goal of providing higher capacity. Systems beyond 3G are expected to cater for a wide variety of services such as speech, data, image transmission, video, as well as multimedia services consisting of a combination of these. With the air interface being the bottleneck in mobile networks, recent enhancing technologies such as the High Speed Downlink Packet Access (HSDPA), incorporate major changes to the radio access segment of 3G Universal Mobile Telecommunications System (UMTS). HSDPA introduces new features such as fast link adaptation mechanisms, fast packet scheduling, and physical layer retransmissions in the base stations, necessitating buffering of data at the air interface which presents a bottleneck to end-to-end communication. Hence, in order to provide end-to-end Quality of Service (QoS) guarantees to multimedia services in wireless networks such as HSDPA, efficient buffer management schemes are required at the air interface. The main objective of this thesis is to propose and evaluate solutions that will address the QoS optimization of multimedia traffic at the radio link interface of HSDPA systems. In the thesis, a novel queuing system known as the Time-Space Priority (TSP) scheme is proposed for multimedia traffic QoS control. TSP provides customized preferential treatment to the constituent flows in the multimedia traffic to suit their diverse QoS requirements. With TSP queuing, the real-time component of the multimedia traffic, being delay sensitive and loss tolerant, is given transmission priority; while the non-real-time component, being loss sensitive and delay tolerant, enjoys space priority. Hence, based on the TSP queuing paradigm, new buffer managementalgorithms are designed for joint QoS control of the diverse components in a multimedia session of the same HSDPA user. In the thesis, a TSP based buffer management algorithm known as the Enhanced Time Space Priority (E-TSP) is proposed for HSDPA. E-TSP incorporates flow control mechanisms to mitigate congestion in the air interface buffer of a user with multimedia session comprising real-time and non-real-time flows. Thus, E-TSP is designed to provide efficient network and radio resource utilization to improve end-to-end multimedia traffic performance. In order to allow real-time optimization of the QoS control between the real-time and non-real-time flows of the HSDPA multimedia session, another TSP based buffer management algorithm known as the Dynamic Time Space Priority (D-TSP) is proposed. D-TSP incorporates dynamic priority switching between the real-time and non-real-time flows. D-TSP is designed to allow optimum QoS trade-off between the flows whilst still guaranteeing the stringent real-time component’s QoS requirements. The thesis presents results of extensive performance studies undertaken via analytical modelling and dynamic network-level HSDPA simulations demonstrating the effectiveness of the proposed TSP queuing system and the TSP based buffer management schemes

    Integration of Carrier Aggregation and Dual Connectivity for the ns-3 mmWave Module

    Full text link
    Thanks to the wide availability of bandwidth, the millimeter wave (mmWave) frequencies will provide very high data rates to mobile users in next generation 5G cellular networks. However, mmWave links suffer from high isotropic pathloss and blockage from common materials, and are subject to an intermittent channel quality. Therefore, protocols and solutions at different layers in the cellular network and the TCP/IP protocol stack have been proposed and studied. A valuable tool for the end-to-end performance analysis of mmWave cellular networks is the ns-3 mmWave module, which already models in detail the channel, Physical (PHY) and Medium Access Control (MAC) layers, and extends the Long Term Evolution (LTE) stack for the higher layers. In this paper we present an implementation for the ns-3 mmWave module of multi connectivity techniques for 3GPP New Radio (NR) at mmWave frequencies, namely Carrier Aggregation (CA) and Dual Connectivity (DC), and discuss how they can be integrated to increase the functionalities offered by the ns-3 mmWave module.Comment: 9 pages, 7 figures, submitted to the Workshop on ns-3 (WNS3) 201

    The new enhancement of UMTS: HSDPA and HSUPA

    Get PDF
    During the last two decades, the world of the mobile communications grew a lot, as a consequence of the increasing necessity of people to communicate. Now, the mobile communications still need to improve for satisfies the user demands. The new enhancement of UMTS in concrete HSDPA and HSUPA is one of these improvements that the society needs. HSDPA and HSUPA which together are called HSPA, give to the users higher data rates in downlink and uplink. The higher data rates permit to the operators give more different types of services and at the same time with better quality. As a result, people can do several new applications with their mobile terminals like applications that before a computer and internet connection were required, now it is possible to do directly with the mobile terminal. This thesis consists in study these new technologies denominated HSDPA and HSUPA and thus know better the last tendencies in the mobile communications. Also it has a roughly idea about the future tendencies
    • …
    corecore