3 research outputs found

    The Necessity of Relay Selection

    Full text link
    We determine necessary conditions on the structure of symbol error rate (SER) optimal quantizers for limited feedback beamforming in wireless networks with one transmitter-receiver pair and R parallel amplify-and-forward relays. We call a quantizer codebook "small" if its cardinality is less than R, and "large" otherwise. A "d-codebook" depends on the power constraints and can be optimized accordingly, while an "i-codebook" remains fixed. It was previously shown that any i-codebook that contains the single-relay selection (SRS) codebook achieves the full-diversity order, R. We prove the following: Every full-diversity i-codebook contains the SRS codebook, and thus is necessarily large. In general, as the power constraints grow to infinity, the limit of an optimal large d-codebook contains an SRS codebook, provided that it exists. For small codebooks, the maximal diversity is equal to the codebook cardinality. Every diversity-optimal small i-codebook is an orthogonal multiple-relay selection (OMRS) codebook. Moreover, the limit of an optimal small d-codebook is an OMRS codebook. We observe that SRS is nothing but a special case of OMRS for codebooks with cardinality equal to R. As a result, we call OMRS as "the universal necessary condition" for codebook optimality. Finally, we confirm our analytical findings through simulations.Comment: 29 pages, 4 figure

    Distributed Beamforming in Wireless Multiuser Relay-Interference Networks with Quantized Feedback

    Full text link
    We study quantized beamforming in wireless amplify-and-forward relay-interference networks with any number of transmitters, relays, and receivers. We design the quantizer of the channel state information to minimize the probability that at least one receiver incorrectly decodes its desired symbol(s). Correspondingly, we introduce a generalized diversity measure that encapsulates the conventional one as the first-order diversity. Additionally, it incorporates the second-order diversity, which is concerned with the transmitter power dependent logarithmic terms that appear in the error rate expression. First, we show that, regardless of the quantizer and the amount of feedback that is used, the relay-interference network suffers a second-order diversity loss compared to interference-free networks. Then, two different quantization schemes are studied: First, using a global quantizer, we show that a simple relay selection scheme can achieve maximal diversity. Then, using the localization method, we construct both fixed-length and variable-length local (distributed) quantizers (fLQs and vLQs). Our fLQs achieve maximal first-order diversity, whereas our vLQs achieve maximal diversity. Moreover, we show that all the promised diversity and array gains can be obtained with arbitrarily low feedback rates when the transmitter powers are sufficiently large. Finally, we confirm our analytical findings through simulations.Comment: 41 pages, 14 figures, submitted to IEEE Transactions on Information Theory, July 2010. This work was presented in part at IEEE Global Communications Conference (GLOBECOM), Nov. 200
    corecore