219 research outputs found

    A system of relational syllogistic incorporating full Boolean reasoning

    Full text link
    We present a system of relational syllogistic, based on classical propositional logic, having primitives of the following form: Some A are R-related to some B; Some A are R-related to all B; All A are R-related to some B; All A are R-related to all B. Such primitives formalize sentences from natural language like `All students read some textbooks'. Here A and B denote arbitrary sets (of objects), and R denotes an arbitrary binary relation between objects. The language of the logic contains only variables denoting sets, determining the class of set terms, and variables denoting binary relations between objects, determining the class of relational terms. Both classes of terms are closed under the standard Boolean operations. The set of relational terms is also closed under taking the converse of a relation. The results of the paper are the completeness theorem with respect to the intended semantics and the computational complexity of the satisfiability problem.Comment: Available at http://link.springer.com/article/10.1007/s10849-012-9165-

    Reduction between Categorical Syllogisms Based on the Syllogism EIO-2

    Get PDF
    Syllogism reasoning is a common and important form of reasoning in human thinking from Aristotle onwards. To overcome the shortcomings of previous studies, this article makes full use of set theory and classical propositional logic, and deduces the remaining 23 valid syllogisms only on the basis of the syllogism EIO-2 from the perspective of mathematical structuralism, and then successfully establishes a concise formal axiom system for categorical syllogistic logic. More specifically, the article takes advantage of the trisection structure of categorical propositions such as Q(a, b), the transformation relations between an Aristotelian quantifier and its inner and outer negation, the symmetry of the two Aristotelian quantifier (that is, no and some), and some inference rules in classical propositional logic, and derives the remaining 23 valid syllogisms from the syllogism EIO-2, so as to realize the reduction between different valid categorical syllogisms

    How to Deduce the Other 91 Valid Aristotelian Modal Syllogisms from the Syllogism IAI-3

    Get PDF
    This paper firstly formalizes Aristotelian modal syllogisms by taking advantage of the trisection structure of (modal) categorical propositions. And then making full use of the truth value definition of (modal) categorical propositions, the transformable relations between an Aristotelian quantifier and its three negative quantifiers, the reasoning rules of classical propositional logic, and the symmetry of the two Aristotelian quantifiers (i.e. some and no), this paper shows that at least 91 valid Aristotelian modal syllogisms can be deduced from IAI-3 on the basis of possible world semantics and set theory. The reason why these valid Aristotelian modal syllogisms can be reduced is that any Aristotelian quantifier can be defined by the other three Aristotelian quantifiers, and the necessary modality ( ) and possible modality ( ) can also be defined mutually. This research method is universal. This innovative study not only provides a unified mathematical research paradigm for the study of generalized modal syllogistic and other kinds of syllogistic, but also makes contributions to knowledge representation and knowledge reasoning in computer science

    Relations between logic and mathematics in the work of Benjamin and Charles S. Peirce.

    Get PDF
    Charles Peirce (1839-1914) was one of the most important logicians of the nineteenth century. This thesis traces the development of his algebraic logic from his early papers, with especial attention paid to the mathematical aspects. There are three main sources to consider. 1) Benjamin Peirce (1809-1880), Charles's father and also a leading American mathematician of his day, was an inspiration. His memoir Linear Associative Algebra (1870) is summarised and for the first time the algebraic structures behind its 169 algebras are analysed in depth. 2) Peirce's early papers on algebraic logic from the late 1860s were largely an attempt to expand and adapt George Boole's calculus, using a part/whole theory of classes and algebraic analogies concerning symbols, operations and equations to produce a method of deducing consequences from premises. 3) One of Peirce's main achievements was his work on the theory of relations, following in the pioneering footsteps of Augustus De Morgan. By linking the theory of relations to his post-Boolean algebraic logic, he solved many of the limitations that beset Boole's calculus. Peirce's seminal paper `Description of a Notation for the Logic of Relatives' (1870) is analysed in detail, with a new interpretation suggested for his mysterious process of logical differentiation. Charles Peirce's later work up to the mid 1880s is then surveyed, both for its extended algebraic character and for its novel theory of quantification. The contributions of two of his students at the Johns Hopkins University, Oscar Mitchell and Christine Ladd-Franklin are traced, specifically with an analysis of their problem solving methods. The work of Peirce's successor Ernst Schröder is also reviewed, contrasting the differences and similarities between their logics. During the 1890s and later, Charles Peirce turned to a diagrammatic representation and extension of his algebraic logic. The basic concepts of this topological twist are introduced. Although Peirce's work in logic has been studied by previous scholars, this thesis stresses to a new extent the mathematical aspects of his logic - in particular the algebraic background and methods, not only of Peirce but also of several of his contemporaries

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    A set-based reasoner for the description logic \shdlssx (Extended Version)

    Full text link
    We present a \ke-based implementation of a reasoner for a decidable fragment of (stratified) set theory expressing the description logic \dlssx (\shdlssx, for short). Our application solves the main TBox and ABox reasoning problems for \shdlssx. In particular, it solves the consistency problem for \shdlssx-knowledge bases represented in set-theoretic terms, and a generalization of the \emph{Conjunctive Query Answering} problem in which conjunctive queries with variables of three sorts are admitted. The reasoner, which extends and optimizes a previous prototype for the consistency checking of \shdlssx-knowledge bases (see \cite{cilc17}), is implemented in \textsf{C++}. It supports \shdlssx-knowledge bases serialized in the OWL/XML format, and it admits also rules expressed in SWRL (Semantic Web Rule Language).Comment: arXiv admin note: text overlap with arXiv:1804.11222, arXiv:1707.07545, arXiv:1702.0309

    Thinking Things Through

    Get PDF
    A Photcopy of Thinking Things Through, Princeton Univeresity Press, 198

    Boundary Algebra: A Simple Notation for Boolean Algebra and the Truth Functors

    Get PDF
    Boundary algebra [BA] is a simpler notation for Spencer-Brown’s (1969) primary algebra [pa], the Boolean algebra 2, and the truth functors. The primary arithmetic [PA] consists of the atoms ‘()’ and the blank page, concatenation, and enclosure between ‘(‘ and ‘)’, denoting the primitive notion of distinction. Inserting letters denoting the presence or absence of () into a PA formula yields a BA formula. The BA axioms are "()()=()" (A1), and "(()) [=?] may be written or erased at will” (A2). Repeated application of these axioms to a PA formula yields a member of B= {(),?} called its simplification. (a) has two intended interpretations: (a) ? a? (Boolean algebra 2), and (a) ? ~a (sentential logic). BA is self-dual: () ? 1 [dually 0] so that B is the carrier for 2, ab ? a?b [a?b], and (a)b [(a(b))] ? a=b, so that ?=() [()=?] follows trivially and B is a poset. The BA basis abc= bca (Dilworth 1938), a(ab)= a(b), and a()=() (Bricken 2002) facilitates clausal reasoning and proof by calculation. BA also simplifies normal forms and Quine’s (1982) truth value analysis. () ? true [false] yields boundary logic.G. Spencer Brown; boundary algebra; boundary logic; primary algebra; primary arithmetic; Boolean algebra; calculation proof; C.S. Peirce; existential graphs.

    Boundary Algebra: A Simpler Approach to Boolean Algebra and the Sentential Connectives

    Get PDF
    Boundary algebra [BA] is a algebra of type , and a simplified notation for Spencer-Brown’s (1969) primary algebra. The syntax of the primary arithmetic [PA] consists of two atoms, () and the blank page, concatenation, and enclosure between ‘(‘ and ‘)’, denoting the primitive notion of distinction. Inserting letters denoting, indifferently, the presence or absence of () into a PA formula yields a BA formula. The BA axioms are A1: ()()= (), and A2: “(()) [abbreviated ‘⊥’] may be written or erased at will,” implying (⊥)=(). The repeated application of A1 and A2 simplifies any PA formula to either () or ⊥. The basis for BA is B1: abc=bca (concatenation commutes & associates); B2, ⊥a=a (BA has a lower bound, ⊥); B3, (a)a=() (BA is a complemented lattice); and B4, (ba)a=(b)a (implies that BA is a distributive lattice). BA has two intended models: (1) the Boolean algebra 2 with base set B={(),⊥}, such that () ⇔ 1 [dually 0], (a) ⇔ a′, and ab ⇔ a∪b [a∩b]; and (2) sentential logic, such that () ⇔ true [false], (a) ⇔ ~a, and ab ⇔ a∨b [a∧b]. BA is a self-dual notation, facilitates a calculational style of proof, and simplifies clausal reasoning and Quine’s truth value analysis. BA resembles C.S. Peirce’s graphical logic, the symbolic logics of Leibniz and W.E. Johnson, the 2 notation of Byrne (1946), and the Boolean term schemata of Quine (1982).Boundary algebra; boundary logic; primary algebra; primary arithmetic; Boolean algebra; calculation proof; G. Spencer-Brown; C.S. Peirce; existential graphs
    corecore