12,601 research outputs found

    Is Telehealth Better Used to Treat Patients or Help Other Physicians Treat Patients? An Agent-Based Modeling Study of Healthcare Provision

    Get PDF
    Telehealth, the delivery of medical care remotely, is hoped to increase access to specialty services and improve health care utilization. Physicians can provide telehealth to each other (e.g. specialist to generalist) or to patients. Specialists often treat complex patients who can be adequately cared for only in academic hospitals, suggesting that providing specialty services via telehealth will reallocate rather than reduce system utilization. Here I use agent-based modeling to simulate telehealth’s effects on clinical outcomes and system utilization in medical toxicology. I found that toxicologist-physician consultation increased patient health and decreased cost. Toxicologist-patient telehealth increased cost and system utilization but did not improve health. The effects were sensitive to patient complexity and the clinical efficacy of the toxicologist. Within the limitations of using simulated data and an incomplete model, these results suggest that telehealth is more cost-effective when used to provide toxicologist access to general physicians than to the public

    Outpatient Emergency Department Utilization: Measurement and Prediction: A Dissertation

    Get PDF
    Approximately half of all emergency department (ED) visits are primary-care sensitive (PCS) – meaning that they could potentially be avoided with timely, effective primary care. Reducing undesirable types of healthcare utilization (including PCS ED use) requires the ability to define, measure, and predict such use in a population. In this retrospective, observational study, we quantified ED use in 2 privately insured populations and developed ED risk prediction models. One dataset, obtained from a Massachusetts managed-care network (MCN), included data from 2009-11. The second was the MarketScan database, with data from 2007-08. The MCN study included 64,623 individuals enrolled for at least 1 base-year month and 1 prediction-year month in Massachusetts whose primary care provider (PCP) participated in the MCN. The MarketScan study included 15,136,261 individuals enrolled for at least 1 base-year month and 1 prediction-year month in the 50 US states plus DC, Puerto Rico, and the US Virgin Islands. We used medical claims to identify principal diagnosis codes for ED visits, and scored each according to the New York University Emergency Department algorithm. We defined primary-care sensitive (PCS) ED visits as those in 3 subcategories: nonemergent, emergent but primary-care treatable, and emergent but preventable/avoidable. We then: 1) defined and described the distributions of 3 ED outcomes: any ED use; number of ED visits; and a new outcome, based on the NYU algorithm, that we call PCS ED use; 2) built and validated predictive models for these outcomes using administrative claims data; 3) compared the performance of models predicting any ED use, number of ED visits, and PCS ED use; 4) enhanced these models by adding enrollee characteristics from electronic medical records, neighborhood characteristics, and payor/provider characteristics, and explored differences in performance between the original and enhanced models. In the MarketScan sample, 10.6% of enrollees had at least 1 ED visit, with about half of utilization scored as PCS. For the top risk group (those in the 99.5th percentile), the model’s sensitivity was 3.1%, specificity was 99.7%, and positive predictive value (PPV) was 49.7%. The model predicting PCS visits yielded sensitivity of 3.8%, specificity of 99.7%, and PPV of 40.5% for the top risk group. In the MCN sample, 14.6% (±0.1%) had at least 1 ED visit during the prediction period, with an overall rate of 18.8 (±0.2) visits per 100 persons and 7.6 (±0.1) PCS ED visits per 100 persons. Measuring PCS ED use with a threshold-based approach resulted in many fewer visits counted as PCS, discarding information unnecessarily. Out of 45 practices, 5 to 11 (11-24%) had observed values that were statistically significantly different from their expected values. Models predicting ED utilization using age, sex, race, morbidity, and prior use only (claims-based models) had lower R2 (ranging from 2.9% to 3.7%) and poorer predictive ability than the enhanced models that also included payor, PCP type and quality, problem list conditions, and covariates from the EMR, Census tract, and MCN provider data (enhanced model R2 ranged from 4.17% to 5.14%). In adjusted analyses, age, claims-based morbidity score, any ED visit in the base year, asthma, congestive heart failure, depression, tobacco use, and neighborhood poverty were strongly associated with increased risk for all 3 measures (all P\u3c.001)

    A novel healthcare resource allocation decision support tool: A forecasting-simulation-optimization approach

    Get PDF
    © 2020 Informa UK Limited, trading as Taylor & Francis Group. This is an accepted manuscript of an article published by Taylor & Francis in Journal of the Operational Research Society on 03 Feb 2020, available online: https://doi.org/10.1080/01605682.2019.1700186.The increasing pressures on the healthcare system in the UK are well documented. The solution lies in making best use of existing resources (e.g. beds), as additional funding is not available. Increasing demand and capacity shortages are experienced across all specialties and services in hospitals. Modelling at this level of detail is a necessity, as all the services are interconnected, and cannot be assumed to be independent of each other. Our review of the literature revealed two facts; First an entire hospital model is rare, and second, use of multiple OR techniques are applied more frequently in recent years. Hybrid models which combine forecasting, simulation and optimization are becoming more popular. We developed a model that linked each and every service and specialty including A&E, and outpatient and inpatient services, with the aim of, (1) forecasting demand for all the specialties, (2) capturing all the uncertainties of patient pathway within a hospital setting using discrete event simulation, and (3) developing a linear optimization model to estimate the required bed capacity and staff needs of a mid-size hospital in England (using essential outputs from simulation). These results will bring a different perspective to key decision makers with a decision support tool for short and long term strategic planning to make rational and realistic plans, and highlight the benefits of hybrid models.Peer reviewe

    Optimization of Resources to Improve Patient Experience in the New Emergency Department of Mater Hospital Dublin

    Get PDF
    Healthcare systems globally are facing capacity issues due to the increased demand of health services, the high cost of resources and the level of quality anticipated of service providers. Emergency Departments (ED) are the most pressurized unit in healthcare systems due to uncertainty in demand and limited resources allocated. Mater Hospital (one of leading hospitals) in Dublin has built a new (state-of-the-art) unit for ED yet faced an issue in resourcing the unit to optimize performance. This paper presents an integrated solution to optimize the capacity of the new ED before opening to public and examine improvement interventions in the ED area. This solution provides ED management with a tool that can contribute significantly in enhancing patient experience by reducing the waiting time from 21 hours to 6 hours while achieving utilization below the 80% burn-out threshold. The model is recommended by Health Service Executives to be used national wide

    Demand and Capacity Modelling of Acute Services Using Simulation and Optimization Techniques

    Get PDF
    The level of difficulty that hospital management have been experiencing over the past decade in terms of balancing demand and capacity needs has been at an unprecedented level in the UK. Due to shortage of capacity, hospitals are unable to treat patients, and in some cases, patients are transferred to other hospitals, outpatient referrals are delayed, and accident and emergency (A&E) waiting times are prolonged. So, it’s time to do things differently, because the current status quo is not an option. A whole hospital level decision support system (DSS) was developed to assess and respond to the needs of local populations. The model integrates every component of a hospital (including A&E, all outpatient and inpatient specialties) to aid with efficient and effective use of scarce resources. An individual service or a specialty cannot be assumed to be independent, they are all interconnected. It is clear from the literature that this level of generic hospital simulation model has never been developed before (so this is an innovative DSS). Using the Hospital Episode Statistics and local datasets, 768 forecasting models for the 28 outpatient and inpatient specialties are developed (to capture demand). Within this context, a variety of forecasting models (i.e. ARIMA, exponential smoothing, stepwise linear regression and STLF) for each specialty of outpatient and inpatient including the A&E department were developed. The best forecasting methods and periods were selected by comparing 4 forecasting methods and 3 periods (i.e. daily, weekly and monthly) according to forecast accuracy values calculated by the mean absolute scaled error (MASE). Demand forecasts were then used as an input into the simulation model for the entire hospital (all specialties). The generic hospital simulation model was developed by taking into account all specialties and interactions amongst the A&E, outpatient and inpatient specialties. Six hundred observed frequency distributions were established for the simulation model. All distributions used in the model were based on age groups. Using other inputs (i.e. financial inputs, number of follow ups, etc.), the hospital was therefore modelled to measure key output metrics in strategic planning. This decision support system eliminates the deficiencies of the current and past studies around modelling hospitals within a single framework. A new output metric which is called ‘demand coverage ratio’ was developed to measure the percentage of patients who are admitted and discharged with available resources of the associated specialty. In addition, a full factorial experimental design with 4 factors (A&E, elective and non-elective admissions and outpatient attendance) at 2 levels (possible 5% and 10% demand increases) was carried out in order to investigate the effects of demand increases on the key outputs (i.e. demand coverage ratio, bed occupancy rate and total revenue). As a result, each factor is found to affect total revenue, as well as the interaction between elective and non-elective admissions. The demand coverage ratio is affected by the changes in outpatient demands as well as A&E arrivals and non-elective admissions. In addition, the A&E arrivals, non-elective admissions and elective admissions are most important for bed occupancy rates, respectively. After an exhaustive review of the literature we notice that an entire hospital model has never been developed that combines forecasting, simulation and optimization techniques. A linear optimization model was developed to estimate the required bed capacity and staff needs of a mid-size hospital in England (using essential outputs from forecasting and forecasting-simulation) for each inpatient elective and non-elective specialty. In conclusion, these results will bring a different perspective to key decision makers with a decision support tool for short and long term strategic planning to make rational and realistic plans. This hospital decision support system can become a crucial instrument for decision makers for efficient service in hospitals in England and other parts of the world

    Medical Malpractice: Impact of the Crisis and Effect of State Tort Reforms

    Get PDF
    Reviews research on the malpractice crisis and examines data on how volatile malpractice environments affect healthcare delivery and how state tort reforms affect premiums, frequency of claims, payouts, and physician supply. Considers policy implications

    Simulation-based Framework to Improve Patient Experience in an Emergency Department

    Get PDF
    The global economic crisis has a significant impact on healthcare resource provision worldwide. The management of limited healthcare resources is further challenged by the high level of uncertainty in demand, which can lead to unbalanced utilisation of the available resources and a potential deterioration of patient satisfaction in terms of longer waiting times and perceived reduced quality of services. Therefore, healthcare managers require timely and accurate tools to optimise resource utility in a complex and ever-changing patient care process. An interactive simulation-based decision support framework is presented in this paper for healthcare process improvement. Complexity and different levels of variability within the process are incorporated into the process modelling phase, followed by developing a simulation model to examine the impact of potential alternatives. As a performance management tool, balanced scorecard (BSC) is incorporated within the framework to support continual and sustainable improvement by using strategic-linked performance measures and actions. These actions are evaluated by the simulation model developed, whilst the trade-off between objectives, though somewhat conflicting, is analysed by a preference model. The preference model is designed in an interactive and iterative process considering decision makers preferences regarding the selected key performance indicators (KPIs). A detailed implementation of the framework is demonstrated on an emergency department (ED) of an adult teaching hospital in north Dublin, Ireland. The results show that the unblocking of ED outflows by in-patient bed management is more effective than increasing only the ED physical capacity or the ED workforce

    Physician supply forecast: better than peering in a crystal ball?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anticipating physician supply to tackle future health challenges is a crucial but complex task for policy planners. A number of forecasting tools are available, but the methods, advantages and shortcomings of such tools are not straightforward and not always well appraised. Therefore this paper had two objectives: to present a typology of existing forecasting approaches and to analyse the methodology-related issues.</p> <p>Methods</p> <p>A literature review was carried out in electronic databases Medline-Ovid, Embase and ERIC. Concrete examples of planning experiences in various countries were analysed.</p> <p>Results</p> <p>Four main forecasting approaches were identified. The supply projection approach defines the necessary inflow to maintain or to reach in the future an arbitrary predefined level of service offer. The demand-based approach estimates the quantity of health care services used by the population in the future to project physician requirements. The needs-based approach involves defining and predicting health care deficits so that they can be addressed by an adequate workforce. Benchmarking health systems with similar populations and health profiles is the last approach. These different methods can be combined to perform a gap analysis. The methodological challenges of such projections are numerous: most often static models are used and their uncertainty is not assessed; valid and comprehensive data to feed into the models are often lacking; and a rapidly evolving environment affects the likelihood of projection scenarios. As a result, the internal and external validity of the projections included in our review appeared limited.</p> <p>Conclusion</p> <p>There is no single accepted approach to forecasting physician requirements. The value of projections lies in their utility in identifying the current and emerging trends to which policy-makers need to respond. A genuine gap analysis, an effective monitoring of key parameters and comprehensive workforce planning are key elements to improving the usefulness of physician supply projections.</p

    Dynamic Analysis of Healthcare Service Delivery: Application of Lean and Agile Concepts

    Get PDF
    Hospitals are looking to industry for proven tools to manage increasingly complex operations and reduce costs simultaneously with improving quality of care. Currently, €˜lean€™ is the preferred system redesign paradigm, which focuses on removing process waste and variation. However, the high level of complexity and uncertainty inherent to healthcare make it incredibly challenging to remove variability and achieve the stable process rates necessary for lean redesign efforts to be effective. This research explores the use of an alternative redesign paradigm €“ €˜agile€™ €“ which was developed in manufacturing to optimize product delivery in volatile demand environments with highly variable customer requirements. €˜Agile€™ redesign focuses on increasing system responsiveness to customers through improved resource coordination and flexibility. System dynamics simulation and empirical case study are used to explore the impact of following an agile redesign approach in healthcare on service access, care quality, and cost; determine the comparative effectiveness of individual agile redesign strategies; and identify opportunities where lean methods can contribute to the creation of responsive, agile enterprises by analyzing hybrid lean-agile approaches. This dissertation contributes to the emerging literature on applying supply chain management concepts in healthcare, and opens a new path for designing healthcare systems that provide the right care, at the right time, to the right patient, at the lowest price
    corecore