3 research outputs found

    A synthesis model with intuitive control capabilities for rolling sounds

    No full text
    International audienceThis paper presents a physically inspired source-filter model for rolling sound synthesis. The model, which is suitable for real-time implementation, is based on qualitative and quantitative observations obtained from a physics-based model described in the literature. In the first part of the paper, the physics-based model is presented, followed by a perceptual experiment, whose aim is to identify the perceptually relevant information characterizing the rolling interaction. On the basis of this experiment, we hypothesize that the particular pattern of the interaction force is responsible for the perception of a rolling object. A complete analysis-synthesis scheme of this interaction force is then provided, along with a description of the calibration of the proposed source-filter sound synthesis process. Finally, a mapping strategy for intuitive control of the proposed synthesis process (i.e. size and velocity of the rolling object and roughness of the surface) is proposed and validated by a listening test

    A perceptually evaluated signal model:Collisions between a vibrating object and an obstacle

    Get PDF
    The collision interaction mechanism between a vibrating string and a non-resonant obstacle is at the heart of many musical instruments. This paper focuses on the identification of perceptually salient auditory features related to this phenomenon. The objective is to design a signal-based synthesis process, with an eye towards developing intuitive control strategies. To this end, a database of synthesized sounds is assembled through physics-based emulation of a string/obstacle collision, in order to characterize the effect of collisions on time-frequency content. The investigation of this database reveals characteristic time-frequency patterns related to the position of the obstacle during the interaction. In particular, a frequency shift of certain modes is apparent for strong interactions, which, alongside the generation of new frequency components, leads to increased perceived roughness and inharmonicity. These observations enable the design of a real-time compatible signal-based sound synthesis process, with a mapping of synthesis parameters linked to the perceived location of the obstacle. The accuracy of the signal model with respect to the physical model sound output and recorded sounds was evaluated through listening tests: time-frequency patterns reproduced by the signal model enabled listeners to precisely recognize the transverse location of the obstacle

    Timbre from Sound Synthesis and High-level Control Perspectives

    Get PDF
    International audienceExploring the many surprising facets of timbre through sound manipulations has been a common practice among composers and instrument makers of all times. The digital era radically changed the approach to sounds thanks to the unlimited possibilities offered by computers that made it possible to investigate sounds without physical constraints. In this chapter we describe investigations on timbre based on the analysis by synthesis approach that consists in using digital synthesis algorithms to reproduce sounds and further modify the parameters of the algorithms to investigate their perceptual relevance. In the first part of the chapter timbre is investigated in a musical context. An examination of the sound quality of different wood species for xylophone making is first presented. Then the influence of instrumental control on timbre is described in the case of clarinet and cello performances. In the second part of the chapter, we mainly focus on the identification of sound morphologies, so called invariant sound structures responsible for the evocations induced by environmental sounds by relating basic signal descriptors and timbre descriptors to evocations in the case of car door noises, motor noises, solid objects, and their interactions
    corecore