3,486 research outputs found

    The Role of Constraints in a Segregation Model: The Symmetric Case

    Get PDF
    In this paper we study the effects of constraints on the dynamics of an adaptive segregation model introduced by Bischi and Merlone (2011). The model is described by a two dimensional piecewise smooth dynamical system in discrete time. It models the dynamics of entry and exit of two populations into a system, whose members have a limited tolerance about the presence of individuals of the other group. The constraints are given by the upper limits for the number of individuals of a population that are allowed to enter the system. They represent possible exogenous controls imposed by an authority in order to regulate the system. Using analytical, geometric and numerical methods, we investigate the border collision bifurcations generated by these constraints assuming that the two groups have similar characteristics and have the same level of tolerance toward the members of the other group. We also discuss the policy implications of the constraints to avoid segregation

    Negative and Nonlinear Response in an Exactly Solved Dynamical Model of Particle Transport

    Full text link
    We consider a simple model of particle transport on the line defined by a dynamical map F satisfying F(x+1) = 1 + F(x) for all x in R and F(x) = ax + b for |x| < 0.5. Its two parameters a (`slope') and b (`bias') are respectively symmetric and antisymmetric under reflection x -> R(x) = -x. Restricting ourselves to the chaotic regime |a| > 1 and therein mainly to the part a>1 we study not only the `diffusion coefficient' D(a,b), but also the `current' J(a,b). An important tool for such a study are the exact expressions for J and D as obtained recently by one of the authors. These expressions allow for a quite efficient numerical implementation, which is important, because the functions encountered typically have a fractal character. The main results are presented in several plots of these functions J(a,b) and D(a,b) and in an over-all `chart' displaying, in the parameter plane, all possibly relevant information on the system including, e.g., the dynamical phase diagram as well as invariants such as the values of topological invariants (kneading numbers) which, according to the formulas, determine the singularity structure of J and D. Our most significant findings are: 1) `Nonlinear Response': The parameter dependence of these transport properties is, throughout the `ergodic' part of the parameter plane (i.e. outside the infinitely many Arnol'd tongues) fractally nonlinear. 2) `Negative Response': Inside certain regions with an apparently fractal boundary the current J and the bias b have opposite signs.Comment: corrected typos and minor reformulations; 28 pages (revtex) with 7 figures (postscript); accepted for publication in JS

    Bifurcations, Chaos, Controlling and Synchronization of Certain Nonlinear Oscillators

    Get PDF
    In this set of lectures, we review briefly some of the recent developments in the study of the chaotic dynamics of nonlinear oscillators, particularly of damped and driven type. By taking a representative set of examples such as the Duffing, Bonhoeffer-van der Pol and MLC circuit oscillators, we briefly explain the various bifurcations and chaos phenomena associated with these systems. We use numerical and analytical as well as analogue simulation methods to study these systems. Then we point out how controlling of chaotic motions can be effected by algorithmic procedures requiring minimal perturbations. Finally we briefly discuss how synchronization of identically evolving chaotic systems can be achieved and how they can be used in secure communications.Comment: 31 pages (24 figures) LaTeX. To appear Springer Lecture Notes in Physics Please Lakshmanan for figures (e-mail: [email protected]
    • …
    corecore