2,557 research outputs found

    Recent advances on filtering and control for nonlinear stochastic complex systems with incomplete information: A survey

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2012 Hindawi PublishingSome recent advances on the filtering and control problems for nonlinear stochastic complex systems with incomplete information are surveyed. The incomplete information under consideration mainly includes missing measurements, randomly varying sensor delays, signal quantization, sensor saturations, and signal sampling. With such incomplete information, the developments on various filtering and control issues are reviewed in great detail. In particular, the addressed nonlinear stochastic complex systems are so comprehensive that they include conventional nonlinear stochastic systems, different kinds of complex networks, and a large class of sensor networks. The corresponding filtering and control technologies for such nonlinear stochastic complex systems are then discussed. Subsequently, some latest results on the filtering and control problems for the complex systems with incomplete information are given. Finally, conclusions are drawn and several possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61104125, 61028008, 61174136, 60974030, and 61074129, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council EPSRC of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Mathematical problems for complex networks

    Get PDF
    Copyright @ 2012 Zidong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This article is made available through the Brunel Open Access Publishing Fund.Complex networks do exist in our lives. The brain is a neural network. The global economy is a network of national economies. Computer viruses routinely spread through the Internet. Food-webs, ecosystems, and metabolic pathways can be represented by networks. Energy is distributed through transportation networks in living organisms, man-made infrastructures, and other physical systems. Dynamic behaviors of complex networks, such as stability, periodic oscillation, bifurcation, or even chaos, are ubiquitous in the real world and often reconfigurable. Networks have been studied in the context of dynamical systems in a range of disciplines. However, until recently there has been relatively little work that treats dynamics as a function of network structure, where the states of both the nodes and the edges can change, and the topology of the network itself often evolves in time. Some major problems have not been fully investigated, such as the behavior of stability, synchronization and chaos control for complex networks, as well as their applications in, for example, communication and bioinformatics

    Finite-time synchronization of Markovian neural networks with proportional delays and discontinuous activations

    Get PDF
    In this paper, finite-time synchronization of neural networks (NNs) with discontinuous activation functions (DAFs), Markovian switching, and proportional delays is studied in the framework of Filippov solution. Since proportional delay is unbounded and different from infinite-time distributed delay and classical finite-time analytical techniques are not applicable anymore, new 1-norm analytical techniques are developed. Controllers with and without the sign function are designed to overcome the effects of the uncertainties induced by Filippov solutions and further synchronize the considered NNs in a finite time. By designing new Lyapunov functionals and using M-matrix method, sufficient conditions are derived to guarantee that the considered NNs realize synchronization in a settling time without introducing any free parameters. It is shown that, though the proportional delay can be unbounded, complete synchronization can still be realized, and the settling time can be explicitly estimated. Moreover, it is discovered that controllers with sign function can reduce the control gains, while controllers without the sign function can overcome chattering phenomenon. Finally, numerical simulations are given to show the effectiveness of theoretical results

    Weighted Sum Synchronization of Memristive Coupled Neural Networks

    Get PDF
    Funding Information: This work is supported by the National Natural Science Foundation of China (No. 61971185) and the Open Fund Project of Key Laboratory in Hunan Universities (No. 18K010). Publisher Copyright: © 2020 Elsevier B.V.It is well known that weighted sum of node states plays an essential role in function implementation of neural networks. Therefore, this paper proposes a new weighted sum synchronization model for memristive neural networks. Unlike the existing synchronization models of memristive neural networks which control each network node to reach synchronization, the proposed model treats the networks as dynamic entireties by weighted sum of node states and makes the entireties instead of each node reach expected synchronization. In this paper, weighted sum complete synchronization and quasi-synchronization are both investigated by designing feedback controller and aperiodically intermittent controller, respectively. Meanwhile, a flexible control scheme is designed for the proposed model by utilizing some switching parameters and can improve anti-interference ability of control system. By applying Lyapunov method and some differential inequalities, some effective criteria are derived to ensure the synchronizations of memristive neural networks. Moreover, the error level of the quasi-synchronization is given. Finally, numerical simulation examples are used to certify the effectiveness of the derived results.Peer reviewe

    Network Identification for Diffusively-Coupled Systems with Minimal Time Complexity

    Full text link
    The theory of network identification, namely identifying the (weighted) interaction topology among a known number of agents, has been widely developed for linear agents. However, the theory for nonlinear agents using probing inputs is less developed and relies on dynamics linearization. We use global convergence properties of the network, which can be assured using passivity theory, to present a network identification method for nonlinear agents. We do so by linearizing the steady-state equations rather than the dynamics, achieving a sub-cubic time algorithm for network identification. We also study the problem of network identification from a complexity theory standpoint, showing that the presented algorithms are optimal in terms of time complexity. We also demonstrate the presented algorithm in two case studies.Comment: 12 pages, 3 figure

    Fast fixed-time synchronization of T–S fuzzy complex networks

    Get PDF
    In this paper, fast fixed-time (FDT) synchronization of T–S fuzzy (TSF) complex networks (CNs) is considered. The given control schemes can make the CNs synchronize with the given isolated system more fleetly than the most of existing results. By constructing comparison system and applying new analytical techniques, sufficient conditions are established to derive fast FDT synchronization speedily. In order to give some comparisons, FDT synchronization of the considered CNs is also presented by designing FDT fuzzy controller. Numerical examples are given to illustrate our new results

    Fixed-time control of delayed neural networks with impulsive perturbations

    Get PDF
    This paper is concerned with the fixed-time stability of delayed neural networks with impulsive perturbations. By means of inequality analysis technique and Lyapunov function method, some novel fixed-time stability criteria for the addressed neural networks are derived in terms of linear matrix inequalities (LMIs). The settling time can be estimated without depending on any initial conditions but only on the designed controllers. In addition, two different controllers are designed for the impulsive delayed neural networks. Moreover, each controller involves three parts, in which each part has different role in the stabilization of the addressed neural networks. Finally, two numerical examples are provided to illustrate the effectiveness of the theoretical analysis
    corecore