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1 Introduction

Recently, there is a rapidly growing interests of fuzzy systems, and many papers have
investigated fuzzy systems, for example, [19,20] and so on. Especially, some researchers
have paid their attention to TSF system [6, 10, 24], which is proposed by Takagi and
Sugeno [18]. TSF system is always depicted by using some fuzzy IF-THEN rules, sim-
ply. However, it can be used to approximate a complex nonlinear system, conveniently.
Therefore, it is necessary to investigate TSF system for its important applications.

It is well known that CNs can describe many natural and artificial systems. So, CNs
are used widely in internet networks, social networks, and so on [3, 15, 27, 29, 34]. CNs
exhibit complicated dynamical behaviors due to complex nodes and their connections.
These nodes and connections can present many different objects, which make CNs dif-
ferent from a single node. Note that the TSF CNs can combine the advantage of TSF
system and CNs, thus much attention has been paid to TSF CNs [7, 17, 21, 23, 35].
Especially, synchronization of TSF CNs with delays and stochastic perturbations was
considered in [35]; by using pinning control, the authors of [17] investigate cluster syn-
chronization of TSF CNs.

As we all know, synchronization is a very important dynamical behavior [33]. At the
same time, it brings much attention thanks to its extensive applications in some fields
such as biological systems, secure communication, and so on [11, 25, 26, 32, 36]. One
can classify various definitions of synchronization into two kinds: (i) synchronization is
achieved when time approach to infinity, for example, asymptotic synchronization, expo-
nential synchronization; (ii) synchronization is realized within a finite time, for example,
finite-time (FET) synchronization. Considering the convergence rate of synchronization,
FET synchronization is optimal [8]. Moreover, the FET control techniques have some
other advantages including good robustness properties [4]. Therefore, more and more
researchers follow FET synchronization with interest [1, 12, 22, 30, 40, 41].

Note that the settling time of FET synchronization is not stationary if the initial states
of systems are not same. In other words, the settling time is heavily rely on initial values.
For some case, we always expect the synchronization is achieved within a given time.
Nevertheless, if the given time is bound up with initial states, one can not choose easily
since the initial values of systems is very hard to obtain generally. Thus, the variable
settling time will prohibit the practical application of FET techniques. Not long ago, FDT
control was constructed in [16], which is an improved FET control. The convergence
time of FDT synchronization can be estimated without the initial conditions. That is to
say, settling time is derived only based on control parameters and system’s parameters.
Then one can make FDT synchronization realize in a prescribed time, which means FDT
synchronization more preferable than FET synchronization. As a result, many researchers
are devoted to developing FDT control techniques [5,13,31,37,39]. Particularly, in order
to improve convergence rate, the authors presented fast FDT control techniques in [14,28,
38]. Motivated by these fast control ideas, this paper designs new control schemes, which
have advantages in convergence rate over many existing results of FDT control.

From the above analyses this manuscript aims to studying fast FDT synchronization
of TSF CNs in this paper. The contributions include: (i) new controllers are designed,
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which can realize fast FDT synchronization more rapidly; (ii) the TSF CNs and TSF
control are considered; (iii) a suitable comparison system is constructed; (iv) fast FDT
synchronization criteria are derived. Moreover, some comparisons are presented to show
the differences between the fast FDT synchronization criteria established in this paper and
the FDT synchronization criteria of this paper and previous papers.

2 Preliminaries

2.1 Notations

R+ denotes the set of nonnegative real numbers, Rn and Rn×m are the n-dimensional
Euclidean space and the set of all n×m real matrices, respectively.B = (bij)n×m stands
for a n×m-dimension matrix.B > 0 (B < 0) denotes thatB is a symmetric and positive
(negative) definite matrix, Bs = (B + BT)/2, and λmax(B) represents its maximum
eigenvalue. ‖·‖ is the standard Euclidean norm.

2.2 Model description

Considering the singleton fuzzier, product fuzzy inference, and a weighted average de-
fuzzifier, which can be found in [18], a TSF system with controller is presented as
Rule τ : IF z1(t) is Mτ1, z2(t) is Mτ2, . . . , zµ(t) is Mτµ, THEN

ẋi(t) =

r∑
τ=1

hτ
(
z(t)

)[
Aτxi(t)+Bτf

(
xi(t)

)
+

N∑
j=1

γijΦxj(t)+Uτi (t)

]
, i ∈ N , (1)

ẏ(t) =

r∑
τ=1

hτ
(
z(t)

)(
Aτy(t)+Bτf

(
y(t)

))
, (2)

where N = {1, 2, . . . , N}, N is the number of nodes, xi(t) = (xi1(t), xi2(t), . . . ,
xin(t))T ∈ Rn and y(t) = (y1(t), y2(t), . . . , yn(t))T ∈ Rn denote the state vectors,
f(·) : Rn → Rn is a continuous function, Aτ , Bτ ∈ Rn×n are constant matrices. Γ =
(γij)N×N satisfies γij > 0 for i 6= j, γii = −

∑N
j=1, j 6=i γij , and Φ = (φij)n×n is

inner-coupling matrix. z(t) = (z1(t), z2(t), . . . , zµ(t))T, zj and Mτj (τ = 1, 2, . . . , r,
j = 1, 2, . . . , µ) are the premise variables and the fuzzy sets. Moreover,

hτ
(
z(t)

)
=

wτ (z(t))∑r
τ=1 wτ (z(t))

, wτ
(
z(t)

)
=

µ∏
j=1

Mτj

(
zj(t)

)
,

wτ (z(t)) > 0 and
∑r
τ=1 wτ (z(t)) > 0. Mτj(zj(t)) is the grade of membership function

of zj(t) in Mτj . It is clear that

r∑
τ=1

hτ
(
z(t)

)
= 1, hτ

(
z(t)

)
> 0, τ = 1, 2, . . . , r, for any t ∈ R+,

Uτi (t) is the controller. xi(0) and y(0) are initial values of (1) and (2), respectively.
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Based on systems (1) and (2), one can derive

ėi(t) =

r∑
τ=1

hτ
(
z(t)

)[
Aτei(t) +Bτg

(
ei(t)

)
+

N∑
j=1

γijΦej(t) + Uτi (t)

]
, i ∈ N ,

where ei(t) = xi(t)− y(t), g(ei(t)) = f(xi(t))− f(y(t)).
This manuscript utilizes the following TSF controller:

Uτi (t) = −ξτi ei(t)− α sign
(
ei(t)

)∣∣ei(t)∣∣κ − βepi (t), i ∈ N , (3)

where τ = 1, 2, . . . , r, κ = q if
∑N
i=1 ‖ei(t)‖2 > 1; otherwise, κ = 1. q > 1

and 0 < p < 1, ξτi is constant to be determined. α > 0 and β > 0 are tunable
constants. sign(ei(t)) = diag(sign(ei1(t)), sign(ei2(t)), . . . , sign(ein(t))), |ei(t)|κ =
(|ei1(t)|κ, |ei2(t)|κ, . . . , |ein(t)|κ)T, and epi (t) = (epi1(t), epi2(t), . . . , epin(t))T.

Before considering the FDT synchronization of systems (1) and (2), the needed Defi-
nition 1 and Assumption 1 should be stated.

Definition 1. (See [31].) The CN (1) fixed-timely synchronizes onto (2) implies that there
exists a constat T > 0 (regardless of initial values x(0) = (xT1 (0), xT2 (0), . . . , xTN (0))T

and y(0)) satisfying limt→T ‖ei(t)‖ = 0 and ‖ei(t)‖ ≡ 0 for t > T , i ∈ N . Here
T denotes settling time.

The following assumption and lemmas will be used.

Assumption 1. There exists a constant L > 0 such that∥∥f(x(t)
)
− f

(
y(t)

)∥∥ 6 L
∥∥x(t)− y(t)

∥∥, x(t), y(t) ∈ Rn.

Lemma 1. (See [13].) Let a nonnegative function V(t) satisfy

V̇(t) 6 −ηVp(t)− ξVq(t),

Here ξ > 0, η > 0, 1 > p > 0, q > 1. Then V(t) ≡ 0 if

T >
1

η(1− p)
+

1

ξ(q − 1)
.

Lemma 2. (See [9].) Let η1, η2, . . . , ηN > 0, 0 < p 6 1, q > 1. Then

N∑
i=1

ηpi >

(
N∑
i=1

ηi

)p
,

N∑
i=1

ηqi > N1−q

(
N∑
i=1

ηi

)q
.

3 FDT synchronization

3.1 Fast FDT synchronization

In this section, via the designed fuzzy controllers, fast FDT synchronization are derived.
Moreover, we also give some comparisons.
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Theorem 1. Let Assumption 1 hold. Suppose that control parameter ξτi in the set of
controller (3) satisfies the following condition:

Ξτ > ‖Aτ‖IN + L‖Bτ‖IN +$Γ̂ s. (4)

Then the CN (1) can be synchronized onto (2) in a fixed time

T =
1

ᾱ(q − 1)
+

1

ᾱ(1− p)
ln

(
1 +

ᾱ

β

)
, (5)

where Γ̂ = (γ̂ij)N×N , γ̂ij = γij , i 6= j, γ̂ii = ρminγii/$, $ = ‖Φ‖, ρmin is the
minimum eigenvalue of Φs, Ξτ = diag(ξτ1 , ξ

τ
2 , . . . , ξ

τ
N ), and ᾱ = α(nN)(1−q)/2, τ =

1, 2, . . . , r, i, j = 1, 2, . . . , N .

Proof. Consider Lyapunov function

V(t) =

N∑
i=1

eTi (t)ei(t). (6)

It follows that

V̇(t) = 2

N∑
i=1

r∑
τ=1

hτ
(
z(t)

)
eTi (t)

[
Aτei(t)+Bτg

(
ei(t)

)
+

N∑
j=1

γijΦej(t)+Uτi (t)

]
. (7)

By Assumption 1, one derives

eTi (t)Bτg
(
ei(t)

)
6 L‖Bτ‖

∥∥ei(t)∥∥2.
Then from (7) we derive

V̇(t) 6 2

N∑
i=1

r∑
τ=1

hτ
(
z(t)

)[
‖Aτ‖

∥∥ei(t)∥∥2 + L‖Bτ‖
∥∥ei(t)∥∥2 + ρminγii

∥∥ei(t)∥∥2
+

N∑
j=1,j 6=i

$γij
∥∥ei(t)∥∥∥∥ej(t)∥∥− ξτi ∥∥ei(t)∥∥2

]
− 2Θ(t)

6 2

r∑
τ=1

hτ
(
z(t)

)
êT(t)

(
‖Aτ‖IN + L‖Bτ‖IN +$Γ̂ s −Ξτ

)
ê(t)− 2Θ(t),

where ê(t) = (‖e1(t)‖, ‖e2(t)‖, . . . , ‖eN (t)‖)T, Θ(t) =
∑N
i=1 e

T
i (t)[α sign(ei(t)) ×

|ei(t)|κ + βepi (t)].
Noticing condition (4), one obtains

V̇(t) 6 −2Θ(t). (8)

Next, inequality (8) will be separately discussed for two cases.
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https://doi.org/10.15388/namc.2021.26.23060


602 S. Liu et al.

Case 1. When V(t) > 1,

Θ(t) = α

N∑
i=1

[
N∑
j=1

∣∣eij(t)∣∣1+q + β

N∑
j=1

∣∣eij(t)∣∣1+p].
From Lemma 2 it generates

Θ(t) > ᾱ

(
N∑
i=1

eTi (t)ei(t)

)(1+q)/2

+ β

(
N∑
i=1

eTi (t)ei(t)

)(1+p)/2

= ᾱV(1+q)/2(t) + βV(1+p)/2(t). (9)

Case 2. When V(t) < 1,

Θ(t) = α

N∑
i=1

[
N∑
i=1

e2ij(t) + β

N∑
j=1

∣∣eij(t)∣∣(1+p)/2].
By Lemma 2, it yields

Θ(t) > ᾱ

N∑
i=1

eTi (t)ei(t) + β

(
N∑
i=1

eTi (t)ei(t)

)(1+p)/2

= ᾱV(t) + βV(1+p)/2(t). (10)

Form (8)–(10) one derives

V̇(t) 6

{
−α̂V(1+q)/2(t)− β̂V(1+p)/2(t), V(t) > 1,

−α̂V(t)− β̂V(1+p)/2(t), V(t) < 1,
(11)

where α̂ = 2ᾱ, β̂ = 2β.
In order to compare, we give the following system:

Ẇ (t) =


−α̂W (1+q)/2(t)− β̂W (1+p)/2(t), W (t) > 1,

−α̂W (t)− β̂W (1+p)/2(t), 0 < W (t) < 1,

0, W (t) = 0,

W (0) =

N∑
i=1

eTi (0)ei(0).

(12)

By (11) and (12), it is not hard to see that if we find a T > 0 satisfying W (t) = 0 for any
t > T , then it also hold for any t > T , V(t) = 0. By the analysis of Lemma 1 in [14] and
Theorem 1 in [38], let %(t) = W (1−p)/2(t), ε = (q − 1)/(1− p), then

%̇(t) +
1− p

2
α̂%(q−p)/(1−p)(t) +

1− p
2

β̂ = 0, %(t) > 1,

https://www.journals.vu.lt/nonlinear-analysis
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and

%̇(t) +
1− p

2
α̂%(t) +

1− p
2

β̂ = 0, %(t) < 1.

By use the similar calculation with [14] or [38], we will obtain the following estimation
of T :

T =
1

ᾱ(q − 1)
+

1

ᾱ(1− p)
ln

(
1 +

ᾱ

β

)
,

and V(t) ≡ 0 for t > T . Furthermore, e(t) approach to 0 within T . Consequently, the
synchronization goal is realized within T described by (5). The proof is completed.

Remark 1. The settling time of Theorem 1 does not rely on x(0), y0, and the fuzzy
weighting functions hτ (z(t)). Moreover, its estimation is more accurate than most ex-
isting FDT results. It should be noted that the similar estimation is called the fast FDT
results in [14, 28].

Remark 2. In the investigation of FDT synchronization, comparison system is widely
used in some papers such as [31, 37, 39] and so on. With the help of those comparison
systems, the considered FDT stability or synchronization is transformed to the FDT
stability of the corresponding system at 0. Besides, we give the estimation of settling
time with the help of comparison system.

3.2 FDT synchronization

In previous investigations, FDT control techniques have been utilized generally. In order
to present some comparisons clearly, this paper also establishes FDT synchronization
results in Theorem 2 by designing the following FDT control schemes:

Uτi (t) = −ξτi ei(t)− αe
q
i (t)− βe

p
i (t), i ∈ N , τ = 1, 2, . . . , r, (13)

where the definitions of corresponding parameters are similar with (3).

Theorem 2. Let Assumption 1 hold. Suppose that control parameter ξτi in the set of
controller (13) satisfies condition (4). Then the CN (1) can be synchronized onto (2) in
a fixed time. In addition, the settling time are presented by

T =
1

ᾱ(q − 1)
+

1

β(1− p)
, (14)

where the definitions of corresponding parameters are similar with Theorem 1.

Proof. Consider the same Lyapunov function (6). One derives

V̇(t) 6 2

r∑
τ=1

hτ
(
z(t)

)
êT(t)

(
‖Aτ‖IN + L‖Bτ‖IN +$Γ̂ s −Ξτ

)
ê(t)

− 2

N∑
i=1

eTi (t)
[
αeqi (t) + βepi (t)

]
,

where ê(t) is defined in Theorem 1.

Nonlinear Anal. Model. Control, 26(4):597–609, 2021
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From (4) we have

V̇(t) 6 −α̂V(1+q)/2(t)− β̂V(1+p)/2(t), (15)

where α̂ = 2ᾱ, β̂ = 2β.
Based on Lemma 1, it generates V(t) ≡ 0 for t > T . Furthermore, the synchroniza-

tion goal can be realized within T , which is given by (14). We complete the proof.

Remark 3. One can easily see the expression of T in (5) is more accurate than its
expression in (14). Hence, the results of FDT synchronization in many existing papers
including [5, 13, 31, 37, 39] are improved. These can be seen from inequalities (11) and
(15). From (15) one can derive

V̇(t) 6

{
−α̂V(1+q)/2(t)− β̂V(1+p)/2(t), V(t) > 1,

−α̂V(1+q)/2(t)− β̂V(1+p)/2(t), V(t) < 1,

and when V(t) < 1, then −V(1+q)/2(t) > −V(t). Therefore, the conservativeness of
estimation by means of (15) is lager.

Remark 4. When V(t) > 1, −α̂V(1+q)/2(t) plays an important role, while when
V(t) < 1, −β̂V(1+p)/2(t) is a key role. We can give the estimation of setting time with
the help of the similar comparison:

Ẇ (t) =


−α̂W (1+q)/2(t), W (t) > 1,

−β̂W (1+p)/2(t), 0 < W (t) < 1,

0, W (t) = 0,

W (0) =

N∑
i=1

eTi (0)ei(0).

Then we can clearly see that −β̂W (1+p)/2(t) is omitted when W (t) > 1, while
−α̂W (1+q)/2(t) is removed when 0 < W (t) < 1. Therefore, some conservativeness
are caused.

4 Numerical example

Now, we give numerical simulations to verify our synchronization criteria. Here we con-
sider the following TSF systems:

ẋi(t) =

2∑
τ=1

hτ
(
z(t)

)[
Aτxi(t)+Bτf

(
xi(t)

)
+

30∑
j=1

γijΦxj(t)

]
, i = 1, 2, . . . , 30, (16)

ẏ(t) =

2∑
τ=1

hτ
(
z(t)

)[
A2y(t)+B2f

(
y(t)

)]
, (17)

https://www.journals.vu.lt/nonlinear-analysis
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where

h1
(
z(t)

)
=

{
1
2 (1− (sin(z(t)))2) if z(t) 6= 0,

1 if z(t) = 0,

h2
(
z(t)

)
=

{
1
2 (1 + (sin(z(t)))2) if z(t) 6= 0,

0 if z(t) = 0,

A1 =

1 10 0
1 −1 1
0 −15 0

 , A2 =

−5 9 0
1 −1 1
0 −13.5 0

 , B1 = B2 =

3 0 0
0 0 0
0 0 0

 ,
and f(y(t)) = (|y1(t) + 1| − |y1(t) − 1|, 0, 0)T. Moreover, we take z(t) = y1(t),
Φ = diag(1, 1, 1), τ = 1, 2, Γ = (γij)30×30 = −L, where L is the Laplacian matrix
of a BA scale-free network. According to [2], we construct a BA scale-free network. The
parameters are given as: an initial graph is complete with m0 = 10 nodes, m = 3 edges,
and finally, we take N = 30. The BA scale-free network is showed in Fig. 1.

Obviously, the function f(y(t)) satisfies Assumption 1 with L = 2. Accordingly,
the chaotic trajectory of the fuzzy system (17) with y(0) = (0.55, 0.4, 0.6)T is shown in
Fig. 2.

The error systems between (16) and (17) with fuzzy controller (3) can be expressed
by

ėi(t) =

2∑
τ=1

hτ
(
z(t)

)[
Aτei(t) +Bτg

(
ei(t)

)
+

N∑
j=1

γijΦej(t)

− ξτi ei(t)− αeκi (t)− βepi (t)

]
, i = 1, 2, . . . , 30. (18)

Let ξτ = min{ξτ1 , ξτ2 , . . . , ξτ30}, τ = 1, 2. If ξτ > ‖Aτ‖ + L‖Bτ‖ + $σmax(Γ̂ s),
then (4) can be satisfied. By simply computation, one can obtain ξ1 > 24.0625,
ξ2 > 22.5175. Take the control gains ξ1 = 25 and ξ2 = 23. x(0) is chosen from
(−5, 5). From Theorem 1 system (16) synchronizes onto (17) under (3), and the time is
estimated as T = 8.0761, where α = 1, β = 1, q = 5/3, p = 1/3. We have presented
the trajectories of system (18) in Fig. 3 in which FDT synchronization is achieved before
T = 8.0761.

Similarly, under controller (13), system (16) synchronizes onto (17) within T =
8.2221 in view of Theorem 2, which is illustrated by Fig. 4. Here we take ξ1 = 25
and ξ2 = 23. x(0) is taken from (−5, 5), and α = 1, β = 1, q = 5/3, p = 1/3.

Remark 5. From Theorems 1 and 2 we can see that the estimation of T in (5) is more
accurate than this in (14). However, from Figs. 3 and 4 there are only very few difference.
In real life, one can choose the suitable fuzzy control (3) or (13) according to the related
conditions.
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Figure 1. BA scale-free network. Figure 2. Chaotic trajectory of fuzzy
system (17) with y(0) = (0.55, 0.4, 0.6)T.

Figure 3. Trajectories ‖ei(t)‖ (i = 1, 2,
. . . , 30) via fuzzy control (3).

Figure 4. Trajectories ‖ei(t)‖ (i = 1, 2,
. . . , 30) via fuzzy control (13).

5 Conclusions

This manuscript studies fast FDT synchronization of TSF CNs. New controllers are de-
signed, which can make the CNs synchronize with the given isolated system more fleetly
than the most of existing results. By constructing comparison system, sufficient con-
ditions are derived to realize fast FDT. In order to give some comparisons, FDT syn-
chronization of the considered CNs is also presented by designing fuzzy control scheme.
Numerical simulations are given to verify our results.

Moreover, uncertain perturbations will bring some difficulties to achieve synchroniza-
tion of chaotic systems, for example, stochastic perturbations are always considered when
the synchronization of CNs is investigated. Considering the FDT synchronization of CNs
with stochastic perturbations is interesting, which will be our next research topic.
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