10 research outputs found

    Analytical Report on Metaheuristic and Non-Metaheuristic Algorithms for Clustering in Wireless Networks

    Get PDF
    This analytical report delves into the comprehensive evaluation of both metaheuristic and non-metaheuristic algorithms utilized for clustering in wireless networks. Clustering techniques play a pivotal role in enhancing the efficiency and performance of wireless networks by organizing nodes into meaningful groups. Metaheuristic algorithms, inspired by natural processes, offer innovative solutions to complex optimization problems, while non-metaheuristic algorithms rely on traditional mathematical principles. This report systematically compares and contrasts the efficacy of various algorithms, considering key metrics such as convergence speed, scalability, robustness, and adaptability to dynamic network conditions. By scrutinizing both categories of algorithms, this report aims to provide a holistic understanding of their respective advantages, limitations, and applicability in wireless network clustering scenarios. The insights derived from this analysis can guide network engineers, researchers, and practitioners in selecting the most suitable algorithms based on specific network requirements, ultimately contributing to the advancement of wireless network clustering techniques

    A FRAMEWORK FOR ARABIC SENTIMENT ANALYSIS USING MACHINE LEARNING CLASSIFIERS

    Get PDF
    International audienceIn recent years, the use of Internet and online comments, expressed in natural language text, have increased significantly. However, it is difficult for humans to read all these comments and classify them appropriately. Consequently, an automatic approach is required to classify the unstructured data. In this paper, we propose a framework for Arabic language comprising of three steps: pre-processing, feature extraction and machine learning classification. The main aim of the proposed framework is to exploit the combination of different Arabic linguistic features. We evaluate the framework using two benchmark Arabic tweets datasets (ASTD, ATA), which enable sentiment polarity detection in general Arabic and Jordanian dialects. Comparative simulation results show that machine learning classifiers such as Support Vector Machine (SVM), Naive Bayes, MultiLayer Perceptron (MLP) and Logistic Regression-based produce the best performance by using a combination of n-gram features from Arabic tweets datasets. Finally, we evaluate the performance of our proposed framework using an Ensemble classifier approach, with promising results

    A Novel 3D Indoor Node Localization Technique Using Weighted Least Square Estimation with Oppositional Beetle Swarm Optimization Algorithm

    Get PDF
    Due to the familiarity of smart devices and the advancements of mobile Internet, there is a significant need to design an effective indoor localization system. Indoor localization is one of the recent technologies of location-based services (LBS), plays a vital role in commercial and civilian industries. It finds useful in public security, disaster management, and positioning navigation. Several research works have concentrated on the design of accurate 2D indoor localization techniques. Since the 3D indoor localization techniques offer numerous benefits, this paper presents a Novel 3D Indoor Node Localization Technique using Oppositional Beetle Swarm Optimization with Weighted Least Square Estimation (OBSO-WLSE) algorithm. The proposed OBSO-WLSE algorithm aims to improvise the localization accuracy with reduced computational time. Here, the OBSO algorithm is employed for estimating the initial locations of the target that results in the elimination of NLOS error. With respect to the initial location by OBSO technique, the WLSE technique performs iterated computations rapidly to determine the precise final location of the target. To improve the efficiency of the OBSO technique, the concept of oppositional based learning (OBL) is integrated into the traditional BSO algorithm. A number of simulations were run to test the model's accuracy, and the results were analyzed using a variety of metrics

    A Novel 3D Indoor Node Localization Technique Using Weighted Least Square Estimation with Oppositional Beetle Swarm Optimization Algorithm

    Get PDF
    Due to the familiarity of smart devices and the advancements of mobile Internet, there is a significant need to design an effective indoor localization system. Indoor localization is one of the recent technologies of location-based services (LBS), plays a vital role in commercial and civilian industries. It finds useful in public security, disaster management, and positioning navigation. Several research works have concentrated on the design of accurate 2D indoor localization techniques. Since the 3D indoor localization techniques offer numerous benefits, this paper presents a Novel 3D Indoor Node Localization Technique using Oppositional Beetle Swarm Optimization with Weighted Least Square Estimation (OBSO-WLSE) algorithm. The proposed OBSO-WLSE algorithm aims to improvise the localization accuracy with reduced computational time. Here, the OBSO algorithm is employed for estimating the initial locations of the target that results in the elimination of NLOS error. With respect to the initial location by OBSO technique, the WLSE technique performs iterated computations rapidly to determine the precise final location of the target. To improve the efficiency of the OBSO technique, the concept of oppositional based learning (OBL) is integrated into the traditional BSO algorithm. A number of simulations were run to test the model's accuracy, and the results were analyzed using a variety of metrics

    Internet Data Bandwidth Optimization and Prediction in Higher Learning Institutions Using Lagrange’s Interpolation: A Case of Lagos State University of Science and Technology

    Get PDF
    This research work studies the performance of the internet services of institution of higher learning in Nigeria. Data was collated from Lagos State University of Science and Technology (LASUSTECH) as case study of this research work. The problem of Internet Bandwidth optimization in the institution of higher learning in Nigeria was extensively addressed in this paper. The operation of the Link-Load balancer which provides an efficient cost-effective and easy-to-use solution to maximize utilization and availability of Internet access is discussed. In this research work, the Lagrange’s method of interpolation was used to predict effective internet data bandwidth for significantly increasing number of internet users. The linear Lagrange’s interpolation model (LILAGRINT model) was proposed for LASUSTECH.  The predictions allow us to view the effective internet data bandwidth with respect to the corresponding acceptable number of internet users as the number of user’s increases. The integrity of the model was examined, verified and validated at the ICT department of the institution. The LILAGRINT model was integrated into the management of ICT and tested. The result showed that the proposed LILAGRINT model proved to be highly effective and innovative in the area of internet data bandwidth predictability. Keywords:Internet Data Bandwidth, Optimization, Link-load balancer, Lagrange’s interpolation, Predictions, Management of ICT DOI: 10.7176/CEIS/10-1-04 Publication date:September 30th 202

    Lightweight identity based online/offline signature scheme for wireless sensor networks

    Get PDF
    Data security is one of the issues during data exchange between two sensor nodes in wireless sensor networks (WSN). While information flows across naturally exposed communication channels, cybercriminals may access sensitive information. Multiple traditional reliable encryption methods like RSA encryption-decryption and Diffie–Hellman key exchange face a crisis of computational resources due to limited storage, low computational ability, and insufficient power in lightweight WSNs. The complexity of these security mechanisms reduces the network lifespan, and an online/offline strategy is one way to overcome this problem. This study proposed an improved identity-based online/offline signature scheme using Elliptic Curve Cryptography (ECC) encryption. The lightweight calculations were conducted during the online phase, and in the offline phase, the encryption, point multiplication, and other heavy measures were pre-processed using powerful devices. The proposed scheme uniquely combined the Inverse Collusion Attack Algorithm (CAA) with lightweight ECC to generate secure identitybased signatures. The suggested scheme was analyzed for security and success probability under Random Oracle Model (ROM). The analysis concluded that the generated signatures were immune to even the worst Chosen Message Attack. The most important, resource-effective, and extensively used on-demand function was the verification of the signatures. The low-cost verification algorithm of the scheme saved a significant number of valued resources and increased the overall network’s lifespan. The results for encryption/decryption time, computation difficulty, and key generation time for various data sizes showed the proposed solution was ideal for lightweight devices as it accelerated data transmission speed and consumed the least resources. The hybrid method obtained an average of 66.77% less time consumption and up to 12% lower computational cost than previous schemes like the dynamic IDB-ECC two-factor authentication key exchange protocol, lightweight IBE scheme (IDB-Lite), and Korean certification-based signature standard using the ECC. The proposed scheme had a smaller key size and signature size of 160 bits. Overall, the energy consumption was also reduced to 0.53 mJ for 1312 bits of offline storage. The hybrid framework of identity-based signatures, online/offline phases, ECC, CAA, and low-cost algorithms enhances overall performance by having less complexity, time, and memory consumption. Thus, the proposed hybrid scheme is ideally suited for a lightweight WSN

    Application of a Blockchain Enabled Model in Disaster Aids Supply Network Resilience

    Get PDF
    The disaster area is a dynamic environment. The bottleneck in distributing the supplies may be from the damaged infrastructure or the unavailability of accurate information about the required amounts. The success of the disaster response network is based on collaboration, coordination, sovereignty, and equality in relief distribution. Therefore, a reliable dynamic communication system is required to facilitate the interactions, enhance the knowledge for the relief operation, prioritize, and coordinate the goods distribution. One of the promising innovative technologies is blockchain technology which enables transparent, secure, and real-time information exchange and automation through smart contracts. This study analyzes the application of blockchain technology on disaster management resilience. The influences of this most promising application on the disaster aid supply network resilience combined with the Internet of Things (IoT) and Dynamic Voltage Frequency Scaling (DVFS) algorithm are explored employing a network-based simulation. The theoretical analysis reveals an advancement in disaster-aids supply network strategies using smart contracts for collaborations. The simulation study indicates an enhance in resilience by improvement in collaboration and communication due to more time-efficient processing for disaster supply management. From the investigations, insights have been derived for researchers in the field and the managers interested in practical implementation

    A survey on the role of wireless sensor networks and IoT in disaster management

    No full text
    Extreme events and disasters resulting from climate change or other ecological factors are difficult to predict and manage. Current limitations of state-of-the-art approaches to disaster prediction and management could be addressed by adopting new unorthodox risk assessment and management strategies. The next generation Internet of Things (IoT), Wireless Sensor Networks (WSNs), 5G wireless communication, and big data analytics technologies are the key enablers for future effective disaster management infrastructures. In this chapter, we commissioned a survey on emerging wireless communication technologies with potential for enhancing disaster prediction, monitoring, and management systems. Challenges, opportunities, and future research trends are highlighted to provide some insight on the potential future work for researchers in this field.Comment: Accepted in Springer Natural Hazards book serie
    corecore