3 research outputs found

    Management And Security Of Multi-Cloud Applications

    Get PDF
    Single cloud management platform technology has reached maturity and is quite successful in information technology applications. Enterprises and application service providers are increasingly adopting a multi-cloud strategy to reduce the risk of cloud service provider lock-in and cloud blackouts and, at the same time, get the benefits like competitive pricing, the flexibility of resource provisioning and better points of presence. Another class of applications that are getting cloud service providers increasingly interested in is the carriers\u27 virtualized network services. However, virtualized carrier services require high levels of availability and performance and impose stringent requirements on cloud services. They necessitate the use of multi-cloud management and innovative techniques for placement and performance management. We consider two classes of distributed applications – the virtual network services and the next generation of healthcare – that would benefit immensely from deployment over multiple clouds. This thesis deals with the design and development of new processes and algorithms to enable these classes of applications. We have evolved a method for optimization of multi-cloud platforms that will pave the way for obtaining optimized placement for both classes of services. The approach that we have followed for placement itself is predictive cost optimized latency controlled virtual resource placement for both types of applications. To improve the availability of virtual network services, we have made innovative use of the machine and deep learning for developing a framework for fault detection and localization. Finally, to secure patient data flowing through the wide expanse of sensors, cloud hierarchy, virtualized network, and visualization domain, we have evolved hierarchical autoencoder models for data in motion between the IoT domain and the multi-cloud domain and within the multi-cloud hierarchy

    Combining Static Analysis and Targeted Symbolic Execution for Scalable Bug-finding in Application Binaries

    Get PDF
    Manual software testing is laborious and prone to human error. Yet, it is the most popular method for quality assurance. Automating the test-case generation promises better effectiveness, especially for exposing “deep” corner-case bugs. Symbolic execution is an automated technique for program analysis that has recently become practical due to advances in constraint solvers. It stands out as an automated testing technique that has no false positives, it eventually enumerates all feasible program executions, and can prioritize executions of interest. However, “path explosion”, the fact that the number of program executions is typically at least exponential in the size of the program, hinders the adoption of symbolic execution in the real world, where program commonly reaches millions of lines of code. In this thesis, we present a method for generating test-cases using symbolic execution which reach a given potentially buggy “target” statement. Such a potentially buggy program statement can be found by static program analysis or from crash-reports given by users and serve as input to our technique. The test-case generated by our technique serves as a proof of the bug. Generating crashes at the target statement have many applications including re-producing crashes, checking warnings generated by static program analysis tools, or analysis of source code patches in code review process. By constantly steering the symbolic execution along the branches that are most likely to lead to the target program statement and pruning the search space that are unlikely to reach the target, we were able to detect deep bugs in real programs. To tackle exponential growth of program paths, we propose a new scheme to manage program execution paths without exhausting memory. Experiments on real-life programs demonstrate that our tool WatSym, built on selective symbolic execution engine S2E, can generate crashing inputs in feasible time and order of magnitude better than symbolic approaches (as embodied by S2E) failed
    corecore