134 research outputs found

    Tracking Dengue Epidemics using Twitter Content Classification and Topic Modelling

    Full text link
    Detecting and preventing outbreaks of mosquito-borne diseases such as Dengue and Zika in Brasil and other tropical regions has long been a priority for governments in affected areas. Streaming social media content, such as Twitter, is increasingly being used for health vigilance applications such as flu detection. However, previous work has not addressed the complexity of drastic seasonal changes on Twitter content across multiple epidemic outbreaks. In order to address this gap, this paper contrasts two complementary approaches to detecting Twitter content that is relevant for Dengue outbreak detection, namely supervised classification and unsupervised clustering using topic modelling. Each approach has benefits and shortcomings. Our classifier achieves a prediction accuracy of about 80\% based on a small training set of about 1,000 instances, but the need for manual annotation makes it hard to track seasonal changes in the nature of the epidemics, such as the emergence of new types of virus in certain geographical locations. In contrast, LDA-based topic modelling scales well, generating cohesive and well-separated clusters from larger samples. While clusters can be easily re-generated following changes in epidemics, however, this approach makes it hard to clearly segregate relevant tweets into well-defined clusters.Comment: Procs. SoWeMine - co-located with ICWE 2016. 2016, Lugano, Switzerlan

    Integrating Document Clustering and Topic Modeling

    Full text link
    Document clustering and topic modeling are two closely related tasks which can mutually benefit each other. Topic modeling can project documents into a topic space which facilitates effective document clustering. Cluster labels discovered by document clustering can be incorporated into topic models to extract local topics specific to each cluster and global topics shared by all clusters. In this paper, we propose a multi-grain clustering topic model (MGCTM) which integrates document clustering and topic modeling into a unified framework and jointly performs the two tasks to achieve the overall best performance. Our model tightly couples two components: a mixture component used for discovering latent groups in document collection and a topic model component used for mining multi-grain topics including local topics specific to each cluster and global topics shared across clusters.We employ variational inference to approximate the posterior of hidden variables and learn model parameters. Experiments on two datasets demonstrate the effectiveness of our model.Comment: Appears in Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI2013

    Growing Story Forest Online from Massive Breaking News

    Full text link
    We describe our experience of implementing a news content organization system at Tencent that discovers events from vast streams of breaking news and evolves news story structures in an online fashion. Our real-world system has distinct requirements in contrast to previous studies on topic detection and tracking (TDT) and event timeline or graph generation, in that we 1) need to accurately and quickly extract distinguishable events from massive streams of long text documents that cover diverse topics and contain highly redundant information, and 2) must develop the structures of event stories in an online manner, without repeatedly restructuring previously formed stories, in order to guarantee a consistent user viewing experience. In solving these challenges, we propose Story Forest, a set of online schemes that automatically clusters streaming documents into events, while connecting related events in growing trees to tell evolving stories. We conducted extensive evaluation based on 60 GB of real-world Chinese news data, although our ideas are not language-dependent and can easily be extended to other languages, through detailed pilot user experience studies. The results demonstrate the superior capability of Story Forest to accurately identify events and organize news text into a logical structure that is appealing to human readers, compared to multiple existing algorithm frameworks.Comment: Accepted by CIKM 2017, 9 page

    The larger the better: Analysis of a scalable spectral clustering algorithm with cosine similarity

    Get PDF
    Chen (2018) proposed a scalable spectral clustering algorithm for cosine similarity to handle the task of clustering large data sets. It runs extremely fast, with a linear complexity in the size of the data, and achieves state of the art accuracy. This paper conducts perturbation analysis of the algorithm to understand the effect of discarding a perturbation term in an eigendecomposition step. Our results show that the accuracy of the approximation by the scalable algorithm depends on the connectivity of the clusters, their separation and sizes, and is especially accurate for large data sets

    Finding Similar Documents Using Different Clustering Techniques

    Get PDF
    AbstractText clustering is an important application of data mining. It is concerned with grouping similar text documents together. In this paper, several models are built to cluster capstone project documents using three clustering techniques: k-means, k-means fast, and k-medoids. Our datatset is obtained from the library of the College of Computer and Information Sciences, King Saud University, Riyadh. Three similarity measure are tested: cosine similarity, Jaccard similarity, and Correlation Coefficient. The quality of the obtained models is evaluated and compared. The results indicate that the best performance is achieved using k-means and k-medoids combined with cosine similarity. We observe variation in the quality of clustering based on the evaluation measure used. In addition, as the value of k increases, the quality of the resulting cluster improves. Finally, we reveal the categories of graduation projects offered in the Information Technology department for female students
    • …
    corecore