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The Larger the Better:
Analysis of a Scalable Spectral Clustering

Algorithm with Cosine Similarity

Guangliang CHEN a,1

a San José State University, San José, California, United States

Abstract. Chen (2018) proposed a scalable spectral clustering algorithm for cosine
similarity to handle the task of clustering large data sets. It runs extremely fast, with
a linear complexity in the size of the data, and achieves state of the art accuracy.
This paper conducts perturbation analysis of the algorithm to understand the effect
of discarding a perturbation term in an eigendecomposition step. Our results show
that the accuracy of the approximation by the scalable algorithm depends on the
connectivity of the clusters, their separation and sizes, and is especially accurate
for large data sets.

Keywords. spectral clustering, cosine similarity, perturbation analysis

1. Introduction

Spectral clustering [1,2] was introduced at the beginning of the century as a very effec-
tive clustering approach. Given a set of objects O = {o1,o2, . . . ,on} (such as images or
documents) and a notion of similarity s(·, ·) (e.g., Gaussian or cosine similarity), the first
step of spectral clustering, as in other graph-based applications [3,4], is to construct a
weighted graph G from the given data using the similarity function s,

G = {V,E,W}, W = (wi j), wi j = s(oi,o j),

where V = O is the vertex set, E the edge set (there is an edge between objects oi,o j

if and only if wi j > 0), and W the weight matrix. Next, spectral clustering computes
the eigenvectors of a normalized version of W to obtain a low dimensional embedding
of the data. Lastly, simple clustering algorithms like k-means are applied to the low
dimensional coordinates to effectively cluster the given data. See Algorithm 1 for the
Ng-Jordan-Weiss (NJW) version of spectral clustering [2] .
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Algorithm 1 Spectral Clustering (NJW)
Input: Graph G = {V,E,W}, number of clusters k
Output: A partition of the vertices in V into k clusters

1: Construct a diagonal degree matrix D with Dii = ∑ j wi j, and use it to normalize W to obtain
W̃ = D−1/2WD−1/2.

2: Find the top k eigenvectors v1, . . . ,vk of W̃ (corresponding to the largest k eigenvalues) and
stack them as columns into a matrix V = [v1 . . .vk].

3: Group the row vectors of V into k clusters by using the k-means algorithm.

Spectral clustering is a nonlinear clustering method due to the eigenvectors embed-
ding step. As a result, it can easily handle non-convex geometries and accurately sep-
arate non-intersecting shapes. Spectral clustering has been successfully used in many
applications, such as document clustering and image segmentation. However, spectral
clustering is very slow on large data sets because of its high computational complexity
associated to the n×n matrix W, which requires O(n2) memory and O(n3) time (for per-
forming eigenvalue decomposition). Consequently, there has been considerable effort in
the machine learning and data mining communities to develop fast, approximate spectral
clustering algorithms that are scalable to large data [5,6,7,8,9,10,11,12,13,14,15,16,17].
Among those published methods, many use a “sampling plus extension” strategy by first
working on a small number of landmark points selected from the given data and later
extending the result to the full data set. As a result, the quality of the selected landmark
points is crucial for the clustering accuracy and effective sampling can be very challeng-
ing in the setting of large, complex data sets.

2. A Review of the Scalable Spectral Clustering Algorithm

In [13] we tried to use the entire data set for direct clustering in the special setting of
spectral clustering with cosine similarity:

W = XXT − I, (1)

where X= [x1 . . .xn]
T ∈R

n×d represents a data matrix consisting of n unit vectors2 in R
d

and I is the identity matrix. To speed up spectral clustering on large data, we exploited the
product form of the weight matrix W for efficient implementation of spectral clustering.

Specifically, we assumed that the given data, despite its large size (n), has some sort
of low-dimensional structure in one of the following ways:

(a) The dimension d is also large but X is sparse. This assumption is often true for
document data sets that are represented as document-term frequency matrices un-
der the bag-of-words model [18]. An example is the well-known 20 newsgroups
data set3 stored in matrix format: X ∈ R

n×d where n = 18,774 (documents), and
d = 61,188 (terms), but the average row sparsity is only 129.7 (that is, on average,
each document only contains 129.7 distinct words).

2The original data are vectors in R
d . They have been normalized to have unit length in order to compute the

cosine similarity.
3Available at http://qwone.com/∼jason/20Newsgroups/.
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(b) d � n (X does not need to be sparse). This assumption is true for many image
data sets, such as the MNIST handwritten digits4 (n = 70,000,d = 784).

Note that for high dimensional non-sparse data, one can always use principal component
analysis (PCA) to embed the given data into a few hundred dimensions (such that d � n),
which often prove to be sufficient.

Figure 1. Sorted digonals of D and D−1 corresponding to the 20newsgroups data. The red part of each curve
corresponds to the 1% of the data with the lowest degrees. The right plot shows that after that part is removed
from the data, the remaining diagonals of D−1 are approximately constant (mean: 0.0229, standard deviation:
0.0102).

We then showed that in those scenarios, spectral clustering with cosine similarity
may be performed directly through efficient operations on the data matrix X such as
element-wise manipulation, matrix-vector multiplication, and low-rank singular value
decomposition (SVD)5, thus completely avoiding the n×n weight matrix W:

(1) The diagonal degree matrix D is directly computed through matrix-vector mul-
tiplication

D = diag((XXT − I)1) = diag(X(XT 1)−1), (2)

where 1 = (1, . . . ,1)T ∈R
n is a constant vector. The diagonals of D (degrees) are

measures of the connectivity of the vertices in the graph. Afterwards, for some
small α > 0, a fraction α of the data in X with the lowest degrees is discarded as
outliers such that for the remaining data (still denoted by X), the diagonal of D−1

is approximately constant. See Figure 1 for a demonstration.
(2) For the correspondingly reduced weight matrix (still denoted by W), write the

normalized cosine similarity matrix W̃ as follows:

W̃ = D−1/2 (XXT − I)︸ ︷︷ ︸
W

D−1/2 = X̃X̃T −D−1, X̃ = D−1/2X. (3)

Disregard the D−1 term in (3) to use the left singular vectors of X̃ to approximate
the corresponding eigenvectors of W̃ (note that X̃ is sparse or low dimensional,
dependent on X, and thus its SVD can be computed efficiently).

4Available at http://yann.lecun.com/exdb/mnist/.
5All of these operations have a linear complexity in n, the number of data points.
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See Algorithm 2 for the full algorithm.

Algorithm 2 Scalable spectral clustering with cosine similarity
Input: Data matrix X (sparse or of moderate dimension, with L2 normalized rows),

#clusters k, fraction of data to be removed α
Output: Clusters C1, . . . ,Ck and a set of outliers C0

Steps:

1: Compute the degree matrix D via (2) and label the bottom (100α)% points as outliers
(stored in the set C0). Remove C0 from the input data.

2: Calculate X̃ = D−1/2X for the remaining data and find its top k left singular vectors
ũ1, . . . , ũk ∈ R

n by rank-k SVD. Let Ũk = [ũ1, . . . , ũk] ∈ R
n×k.

3: Normalize the rows of Ũk to have unit length and apply k-means to find k clusters
C1, . . . ,Ck.

We tested our scalable algorithm for clustering large text and image data sets and ob-
tained comparable accuracy with the plain implementation but our algorithm runs much
faster [13]. Recently, we have successfully extended the work to deal with general simi-
larity functions (such as Gaussian) [15,17].

3. Analysis

In this section we conduct careful and rigorous analysis of the effect of the term D−1 in
(3) on the eigenvectors of X̃X̃T .

3.1. Insights

We start by making the following observations:

• The matrix X̃X̃T in (3) is symmetric and positive semidefinite, and D−1 can be
viewed as a perturbation to it. Thus, the research conducted here is along the di-
rection of perturbation analysis of the eigenspace of a positive semidefinite ma-
trix.

• The matrix W̃ is similar to a row-stochastic matrix P = D−1W:

W̃ = D−1/2WD−1/2 = D1/2PD−1/2 (4)

Therefore, the largest eigenvalue of W̃ = X̃X̃T −D−1 is 1. The next k−1 largest
eigenvalues of W̃ are expected to be close to 1 and meanwhile, there should be a
significant drop at the (k+1)-th eigenvalue.

• If D has a constant diagonal, then W̃ have the same eigenvectors with X̃X̃T (but
not the same eigenvalues), thus discarding D−1 won’t change the eigenvectors in
such a case.

• Adding a constant multiple of the identity matrix to W̃ does not change its eigen-
vectors (but only shifts its eigenvalues by β ):

W̃+β I = X̃X̃T +(β I−D−1) (5)
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We will select β such that β I−D−1 is as small as possible (with respect to ap-
propriate matrix norm) while being positive semidefinite.

• The underlying function of D−1 is f (x) = 1/x which flattens out quickly as x
increases. This implies that D−1 is often close to being constant diagonal for large
data sets (in which case, most diagonals of D are expected to be large). We will
conduct analysis to estimate the magnitude of the diagonals of D in such settings.

3.2. Analysis

Let Ũk ∈ R
n×k be the matrix consisting of the top k eigenvectors of W̃, which is used

by the exact Ng-Jordan-Weiss spectral clustering algorithm. Denote by Ûk ∈ R
n×k the

matrix consisting of the top k eigenvectors of X̃X̃T (which are also left singular vectors
of X̃), which is used by the scalable spectral clustering algorithm as an approximation to
Ũk. Our goal here is to relate the Grassmann distance between Ûk and Ũk, i.e., ‖ÛkÛT

k −
ŨkŨT

k ‖F , to the perturbation term D−1.
Using [19, Theorem A.1] we can prove the following result.

Theorem 3.1. Let λ1 ≥ λ2 ≥ ·· · ≥ λn ≥ 0 be the eigenvalues of X̃X̃T , and define δk =
λk −λk+1 > 0. Then

‖ŨkŨT
k − ÛkÛT

k ‖F ≤ 2
√

n
δk

‖D−1‖2. (6)

Proof. Write the degree matrix as

D = diag(d1, . . . ,dn), 0 < d1 ≤ ·· · ≤ dn

Let β = d1
−1, and define

W̃(β ) = W̃+β I = X̃X̃T +(β I−D−1)

Clearly, both X̃X̃T and β I−D−1 are symmetric and positive semidefinite. It follows that
W̃(β ) is also positive semidefinite. Additionally, the eigenvectors of W̃(β ) are the same
with those of W̃ (so the top k eigenvectors of W̃(β ) are still Ũk). Thus, β I−D−1 can be
viewed as a positive semidefinite perturbation matrix to the positive semidefinite matrix
X̃X̃T .

Using the perturbation result in [19, Theorem A.1], we obtain that

‖ŨkŨT
k − ÛkÛT

k ‖F ≤ 2
δk

‖β I−D−1‖F

provided that ‖β I−D−1‖F ≤ δk/4.
Since

‖β I−D−1‖2
F =

n

∑
i=1

(
1
d1

− 1
di

)2

=
1
d2

1

n

∑
i=1

(
di −d1

di

)2

≤ 1
d2

1

n

∑
i=1

1 =
n
d2

1

we have
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‖ŨkŨT
k − ÛkÛT

k ‖F ≤ 2
δk

·
√

n
d2

1
=

2
√

n
δk

‖D−1‖2.

This completes the proof.

Next, we estimate the magnitude of the diagonals of D in the setting of image or
document data (where the data matrix has nonnegative entries). For this purpose, we
need to assume that the data is a sample from a mixture distribution in the first orthant of
R

d . Specifically, we suppose that each cluster Cj is a random sample of n j points from a
cone that is within an angle of θ around a unit vector t j, where n j ≥ γn for some fixed
constant γ > 0. See Figure 2 for an illustration. The data used in Algorithm 2, X ∈R

n×d ,
represent the normalized version of the sample.

Figure 2. Mixture of cones model (when k = 2). Each cluster is a collection of samples from a cone concen-
trated around its axis within angle θ . The original observations are projected onto the unit sphere (represented
by the dashed curve) to have unit length for computing the cosine similarity used by Algorithm 2.

We can prove the following result on the magnitude of the degrees of the points.

Theorem 3.2. Under the above assumptions,

di ≥ γ cos2 θ −1, for all i = 1, . . . ,n. (7)

Proof. Consider the data point xi and suppose that it comes from Cj.
By (2), we have

di = xT
i (X

T 1)−1 = xT
i

(
n

∑
�=1

x�

)
−1

Since all the data points are in the first quadrant,

di ≥ xT
i

(
∑

x�∈Cj

x�

)
−1 = xT

i (n jm j)−1

where
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m j =
1
n j

∑
x�∈Cj

x�

is the centroid of Cj.
Using elementary geometry, we have

‖m j‖ ≥ cosθ .

It follows that

di ≥ n j
(
xT

i m j
)−1

≥ n j · (1 · ‖m j‖ · cosθ)−1

≥ (γn) · cosθ · cosθ −1

= γncos2 θ −1

This completes the proof.

Combining the above two theorems immediately give the following result.

Corollary 3.1. Under the same assumptions as in Theorems 3.1 and 3.2,

‖ŨkŨT
k − ÛkÛT

k ‖F ≤ 2
√

n
δk (γncos2 θ −1)

. (8)

4. Discussions

Theorem 3.1 shows that the closeness of Ûk to Ũk is bounded by the kth eigengap δk
(inversely) and the spectral norm of the matrix D. The size of eigengap δk corresponds to
the separation between the different clusters. If the k clusters are all well separated, then
δk will be considerably bigger than zero.

Theorem 3.2 shows that the magnitude of the degrees of the data is O(n). For large
data sets, the degrees of the points are also large, on the same order with the size of the
data. As a result, the diagonals of D−1 will be very small, and thus the perturbation to
X̃X̃T will be small.

Theorem 3.1 combines Theorems 3.1 and 3.2 to relate the Grassmann distance of
Ûk to Ũk to the following quantities:

• n: size of the data set.
• γ: fraction of the smallest cluster in the data.
• θ : tightness of the clusters. The smaller θ (and correspondingly the larger cos2 θ ),

the more connected within each cluster.
• δk: eigengap which measures separation among the clusters.

Overall, the Grassmann distance of Ûk to Ũk is O(n−1/2).
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5. Conclusion

We showed through a matrix perturbation analysis that, for large data sets that have
well connected clusters and sufficient separation between them, the scalable spectral
clustering algorithm (Algorithm 2) provides a close approximation to the plain algorithm
(Algorithm 1). The larger the data set, the better the approximation!
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