55 research outputs found

    Hilbert's "Verunglueckter Beweis," the first epsilon theorem, and consistency proofs

    Full text link
    In the 1920s, Ackermann and von Neumann, in pursuit of Hilbert's Programme, were working on consistency proofs for arithmetical systems. One proposed method of giving such proofs is Hilbert's epsilon-substitution method. There was, however, a second approach which was not reflected in the publications of the Hilbert school in the 1920s, and which is a direct precursor of Hilbert's first epsilon theorem and a certain 'general consistency result' due to Bernays. An analysis of the form of this so-called 'failed proof' sheds further light on an interpretation of Hilbert's Programme as an instrumentalist enterprise with the aim of showing that whenever a `real' proposition can be proved by 'ideal' means, it can also be proved by 'real', finitary means.Comment: 18 pages, final versio

    An Intuitionistic Formula Hierarchy Based on High-School Identities

    Get PDF
    We revisit the notion of intuitionistic equivalence and formal proof representations by adopting the view of formulas as exponential polynomials. After observing that most of the invertible proof rules of intuitionistic (minimal) propositional sequent calculi are formula (i.e. sequent) isomorphisms corresponding to the high-school identities, we show that one can obtain a more compact variant of a proof system, consisting of non-invertible proof rules only, and where the invertible proof rules have been replaced by a formula normalisation procedure. Moreover, for certain proof systems such as the G4ip sequent calculus of Vorob'ev, Hudelmaier, and Dyckhoff, it is even possible to see all of the non-invertible proof rules as strict inequalities between exponential polynomials; a careful combinatorial treatment is given in order to establish this fact. Finally, we extend the exponential polynomial analogy to the first-order quantifiers, showing that it gives rise to an intuitionistic hierarchy of formulas, resembling the classical arithmetical hierarchy, and the first one that classifies formulas while preserving isomorphism

    Hilbert's Program Then and Now

    Get PDF
    Hilbert's program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to "dispose of the foundational questions in mathematics once and for all, "Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, "finitary" means, one should give proofs of the consistency of these axiomatic systems. Although Godel's incompleteness theorems show that the program as originally conceived cannot be carried out, it had many partial successes, and generated important advances in logical theory and meta-theory, both at the time and since. The article discusses the historical background and development of Hilbert's program, its philosophical underpinnings and consequences, and its subsequent development and influences since the 1930s.Comment: 43 page

    Relevant Arithmetic

    Get PDF
    This is a republication of R.K. Meyer's "Relevant Arithmetic", which originally appeared in the Bulletin of the Section of Logic 5 (1976). It sets out the problems that Meyer was to work on for the next decade concerning his system, R#

    Relevant Arithmetic

    Get PDF
    This is a republication of R.K. Meyer's "Relevant Arithmetic", which originally appeared in the Bulletin of the Section of Logic 5 (1976). It sets out the problems that Meyer was to work on for the next decade concerning his system, R#

    Proof Theorie: Some applications of cut-elimination

    Get PDF

    Computational reverse mathematics and foundational analysis

    Get PDF
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in the evaluation of major foundational approaches by a careful examination of two case studies: a partial realization of Hilbert's program due to Simpson [1988], and predicativism in the extended form due to Feferman and Sch\"{u}tte. Shore [2010, 2013] proposes that equivalences in reverse mathematics be proved in the same way as inequivalences, namely by considering only ω\omega-models of the systems in question. Shore refers to this approach as computational reverse mathematics. This paper shows that despite some attractive features, computational reverse mathematics is inappropriate for foundational analysis, for two major reasons. Firstly, the computable entailment relation employed in computational reverse mathematics does not preserve justification for the foundational programs above. Secondly, computable entailment is a Π11\Pi^1_1 complete relation, and hence employing it commits one to theoretical resources which outstrip those available within any foundational approach that is proof-theoretically weaker than Π11-CA0\Pi^1_1\text{-}\mathsf{CA}_0.Comment: Submitted. 41 page
    corecore