481 research outputs found

    PRACB: A Novel Channel Bonding Algorithm for Cognitive Radio Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) can utilize the unlicensed industrial, scientific and medical (ISM) band to communicate the sensed data. The ISM band has been already saturated due to overlaid deployment of WSNs. To solve this problem, WSNs have been powered up by cognitive radio (CR) capability. By using CR technique, WSNs can utilize the spectrum holes opportunistically. Channel bonding (CB) is a technique through which multiple contiguous channels can be combined to form a single wide band channel. By using channel bonding (CB) technique, CR based WSN nodes attempt to find and combine contiguous channels to avail larger bandwidth. In this paper, we show that probability of finding contiguous channels decreases with the increase in number of channels. Moreover, we propose two algorithms of primary radio (PR) activity based channel bonding schemes and compare with sample width algorithm (SWA). The simulation results show that our algorithm significantly avoids PR-CR harmful interference and CB in cognitive radio sensor networks (CRSNs) provides greater bandwidth to CR nodes

    Multi-service systems: an enabler of flexible 5G air-interface

    Get PDF
    Multi-service system is an enabler to flexibly support diverse communication requirements for the next generation wireless communications. In such a system, multiple types of services co-exist in one baseband system with each service having its optimal frame structure and low out of band emission (OoBE) waveforms operating on the service frequency band to reduce the inter-service-band-interference (ISvcBI). In this article, a framework for multi-service system is established and the challenges and possible solutions are studied. The multi-service system implementation in both time and frequency domain is discussed. Two representative subband filtered multicarrier (SFMC) waveforms: filtered orthogonal frequency division multiplexing (F-OFDM) and universal filtered multi-carrier (UFMC) are considered in this article. Specifically, the design methodology, criteria, orthogonality conditions and prospective application scenarios in the context of 5G are discussed. We consider both single-rate (SR) and multi-rate (MR) signal processing methods. Compared with the SR system, the MR system has significantly reduced computational complexity at the expense of performance loss due to inter-subband-interference (ISubBI) in MR systems. The ISvcBI and ISubBI in MR systems are investigated with proposed low-complexity interference cancelation algorithms to enable the multi-service operation in low interference level conditions

    Remaining idle time aware intelligent channel bonding schemes for cognitive radio sensor networks

    Get PDF
    Channel bonding (CB) is a technique used to provide larger bandwidth to users. It has been applied to various networks such as wireless local area networks, wireless sensor networks, cognitive radio networks, and cognitive radio sensor networks (CRSNs). The implementation of CB in CRSNs needs special attention as primary radio (PR) nodes traffic must be protected from any harmful interference by cognitive radio (CR) sensor nodes. On the other hand, CR sensor nodes need to communicate without interruption to meet their data rate requirements and conserve energy. If CR nodes perform frequent channel switching due to PR traffic then it will be difficult to meet their quality of service and data rate requirements. So, CR nodes need to select those channels which are stable. By stable, we mean those channels which having less PR activity or long remaining idle time and cause less harmful interference to PR nodes. In this paper, we propose two approaches remaining idle time aware intelligent channel bonding (RITCB) and remaining idle time aware intelligent channel bonding with interference prevention (RITCB-IP) for cognitive radio sensor networks which select stable channels for CB which have longest remaining idle time. We compare our approaches with four schemes such as primary radio user activity aware channel bonding scheme, sample width algorithm, cognitive radio network over white spaces and AGILE. Simulation results show that our proposed approaches RITCB and RITCB-IP decrease harmful interference and increases the life time of cognitive radio sensor nodes

    On the Benefits of Channel Bonding in Dense, Decentralized Wi-Fi 4 Networks

    Get PDF
    Channel bonding is a technique first defined in the IEEE 802.11n standard to increase the throughput in wireless networks by means of using wider channels. In IEEE 802.11n (nowadays also known as Wi-Fi 4), it is possible to use 40 MHz channels instead of the classical 20 MHz channels. Although using channel bonding can increase the throughput, the classic 802.11 setting only allows for two orthogonal channels in the 2.4 GHz frequency band, which is not enough for proper channel assignment in dense settings. For that reason, it is commonly accepted that channel bonding is not suitable for this frequency band. However, to the best of our knowledge, there is not any accurate study that deals with this issue thoroughly. In this work, we study in depth the effect of channel bonding in Wi-Fi 4 dense, decentralized networks operating in the 2.4 GHz frequency band. We confirm the negative effect of using channel bonding in the 2.4 GHz frequency band with 11 channels which are 20 MHz wide (as in North America), but we also show that when there are 13 or more channels at hand (as in many other parts of the world, including Europe and Japan), the use of channel bonding yields consistent throughput improvements. For that reason, we claim that the common assumption of not considering channel bonding in the 2.4 GHz band should be revised

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Energy Efficient Cross-Layer Transmission Model for Mobile Wireless Sensor Networks

    Get PDF
    • …
    corecore