4,415 research outputs found

    A survey on passive digital video forgery detection techniques

    Get PDF
    Digital media devices such as smartphones, cameras, and notebooks are becoming increasingly popular. Through digital platforms such as Facebook, WhatsApp, Twitter, and others, people share digital images, videos, and audio in large quantities. Especially in a crime scene investigation, digital evidence plays a crucial role in a courtroom. Manipulating video content with high-quality software tools is easier, which helps fabricate video content more efficiently. It is therefore necessary to develop an authenticating method for detecting and verifying manipulated videos. The objective of this paper is to provide a comprehensive review of the passive methods for detecting video forgeries. This survey has the primary goal of studying and analyzing the existing passive techniques for detecting video forgeries. First, an overview of the basic information needed to understand video forgery detection is presented. Later, it provides an in-depth understanding of the techniques used in the spatial, temporal, and spatio-temporal domain analysis of videos, datasets used, and their limitations are reviewed. In the following sections, standard benchmark video forgery datasets and the generalized architecture for passive video forgery detection techniques are discussed in more depth. Finally, identifying loopholes in existing surveys so detecting forged videos much more effectively in the future are discussed

    Autoencoder with recurrent neural networks for video forgery detection

    Full text link
    Video forgery detection is becoming an important issue in recent years, because modern editing software provide powerful and easy-to-use tools to manipulate videos. In this paper we propose to perform detection by means of deep learning, with an architecture based on autoencoders and recurrent neural networks. A training phase on a few pristine frames allows the autoencoder to learn an intrinsic model of the source. Then, forged material is singled out as anomalous, as it does not fit the learned model, and is encoded with a large reconstruction error. Recursive networks, implemented with the long short-term memory model, are used to exploit temporal dependencies. Preliminary results on forged videos show the potential of this approach.Comment: Presented at IS&T Electronic Imaging: Media Watermarking, Security, and Forensics, January 201

    The PS-Battles Dataset - an Image Collection for Image Manipulation Detection

    Full text link
    The boost of available digital media has led to a significant increase in derivative work. With tools for manipulating objects becoming more and more mature, it can be very difficult to determine whether one piece of media was derived from another one or tampered with. As derivations can be done with malicious intent, there is an urgent need for reliable and easily usable tampering detection methods. However, even media considered semantically untampered by humans might have already undergone compression steps or light post-processing, making automated detection of tampering susceptible to false positives. In this paper, we present the PS-Battles dataset which is gathered from a large community of image manipulation enthusiasts and provides a basis for media derivation and manipulation detection in the visual domain. The dataset consists of 102'028 images grouped into 11'142 subsets, each containing the original image as well as a varying number of manipulated derivatives.Comment: The dataset introduced in this paper can be found on https://github.com/dbisUnibas/PS-Battle
    • …
    corecore