6 research outputs found

    AMD Prefetch Attacks through Power and Time

    Get PDF
    Modern operating systems fundamentally rely on the strict isolation of user applications from the kernel. This isolation is enforced by the hardware. On Intel CPUs, this isolation has been shown to be imperfect, for instance, with the prefetch side-channel. With Meltdown, it was even completely circumvented. Both the prefetch side channel and Meltdown have been mitigated with the same software patch on Intel. As AMD is believed to be not vulnerable to these attacks, this software patch is not active by default on AMD CPUs. In this paper, we show that the isolation on AMD CPUs suffers from the same type of side-channel leakage. We discover timing and power variations of the prefetch instruction that can be observed from unprivileged user space. In contrast to previous work on prefetch attacks on Intel, we show that the prefetch instruction on AMD leaks even more information. We demonstrate the significance of this side channel with multiple case studies in real-world scenarios. We demonstrate the first microarchitectural break of (fine-grained) KASLR on AMD CPUs. We monitor kernel activity, e.g., if audio is played over Bluetooth, and establish a covert channel. Finally, we even leak kernel memory with 52.85 B/s with simple Spectre gadgets in the Linux kernel. We show that stronger page table isolation should be activated on AMD CPUs by default to mitigate our presented attacks successfully

    Security and Privacy Threats on Mobile Devices through Side-Channels Analysis

    Get PDF
    In recent years, mobile devices (such as smartphones and tablets) have become essential tools in everyday life for billions of people all around the world. Users continuously carry such devices with them and use them for daily communication activities and social network interactions. Hence, such devices contain a huge amount of private and sensitive information. For this reason, mobile devices become popular targets of attacks. In most attack settings, the adversary aims to take local or remote control of a device to access user sensitive information. However, such violations are not easy to carry out since they need to leverage a vulnerability of the system or a careless user (i.e., install a malware app from an unreliable source). A different approach that does not have these shortcomings is the side-channels analysis. In fact, side-channels are physical phenomenon that can be measured from both inside or outside a device. They are mostly due to the user interaction with a mobile device, but also to the context in which the device is used, hence they can reveal sensitive user information such as identity and habits, environment, and operating system itself. Hence, this approach consists of inferring private information that is leaked by a mobile device through a side-channel. Besides, side-channel information is also extremely valuable to enforce security mechanisms such as user authentication, intrusion and information leaks detection. This dissertation investigates novel security and privacy challenges on the analysis of side-channels of mobile devices. This thesis is composed of three parts, each focused on a different side-channel: (i) the usage of network traffic analysis to infer user private information; (ii) the energy consumption of mobile devices during battery recharge as a way to identify a user and as a covert channel to exfiltrate data; and (iii) the possible security application of data collected from built-in sensors in mobile devices to authenticate the user and to evade sandbox detection by malware. In the first part of this dissertation, we consider an adversary who is able to eavesdrop the network traffic of the device on the network side (e.g., controlling a WiFi access point). The fact that the network traffic is often encrypted makes the attack even more challenging. Our work proves that it is possible to leverage machine learning techniques to identify user activity and apps installed on mobile devices analyzing the encrypted network traffic they produce. Such insights are becoming a very attractive data gathering technique for adversaries, network administrators, investigators and marketing agencies. In the second part of this thesis, we investigate the analysis of electric energy consumption. In this case, an adversary is able to measure with a power monitor the amount of energy supplied to a mobile device. In fact, we observed that the usage of mobile device resources (e.g., CPU, network capabilities) directly impacts the amount of energy retrieved from the supplier, i.e., USB port for smartphones, wall-socket for laptops. Leveraging energy traces, we are able to recognize a specific laptop user among a group and detect intruders (i.e., user not belonging to the group). Moreover, we show the feasibility of a covert channel to exfiltrate user data which relies on temporized energy consumption bursts. In the last part of this dissertation, we present a side-channel that can be measured within the mobile device itself. Such channel consists of data collected from the sensors a mobile device is equipped with (e.g., accelerometer, gyroscope). First, we present DELTA, a novel tool that collects data from such sensors, and logs user and operating system events. Then, we develop MIRAGE, a framework that relies on sensors data to enhance sandboxes against malware analysis evasion
    corecore