1,195 research outputs found

    A Survey of Monte Carlo Tree Search Methods

    Get PDF
    Monte Carlo tree search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarize the results from the key game and nongame domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work

    Assessing the Potential of Classical Q-learning in General Game Playing

    Get PDF
    After the recent groundbreaking results of AlphaGo and AlphaZero, we have seen strong interests in deep reinforcement learning and artificial general intelligence (AGI) in game playing. However, deep learning is resource-intensive and the theory is not yet well developed. For small games, simple classical table-based Q-learning might still be the algorithm of choice. General Game Playing (GGP) provides a good testbed for reinforcement learning to research AGI. Q-learning is one of the canonical reinforcement learning methods, and has been used by (Banerjee &\& Stone, IJCAI 2007) in GGP. In this paper we implement Q-learning in GGP for three small-board games (Tic-Tac-Toe, Connect Four, Hex)\footnote{source code: https://github.com/wh1992v/ggp-rl}, to allow comparison to Banerjee et al.. We find that Q-learning converges to a high win rate in GGP. For the ϵ\epsilon-greedy strategy, we propose a first enhancement, the dynamic ϵ\epsilon algorithm. In addition, inspired by (Gelly &\& Silver, ICML 2007) we combine online search (Monte Carlo Search) to enhance offline learning, and propose QM-learning for GGP. Both enhancements improve the performance of classical Q-learning. In this work, GGP allows us to show, if augmented by appropriate enhancements, that classical table-based Q-learning can perform well in small games.Comment: arXiv admin note: substantial text overlap with arXiv:1802.0594

    On monte carlo tree search and reinforcement learning

    Get PDF
    Fuelled by successes in Computer Go, Monte Carlo tree search (MCTS) has achieved widespread adoption within the games community. Its links to traditional reinforcement learning (RL) methods have been outlined in the past; however, the use of RL techniques within tree search has not been thoroughly studied yet. In this paper we re-examine in depth this close relation between the two fields; our goal is to improve the cross-awareness between the two communities. We show that a straightforward adaptation of RL semantics within tree search can lead to a wealth of new algorithms, for which the traditional MCTS is only one of the variants. We confirm that planning methods inspired by RL in conjunction with online search demonstrate encouraging results on several classic board games and in arcade video game competitions, where our algorithm recently ranked first. Our study promotes a unified view of learning, planning, and search

    Traditional Wisdom and Monte Carlo Tree Search Face-to-Face in the Card Game Scopone

    Get PDF
    We present the design of a competitive artificial intelligence for Scopone, a popular Italian card game. We compare rule-based players using the most established strategies (one for beginners and two for advanced players) against players using Monte Carlo Tree Search (MCTS) and Information Set Monte Carlo Tree Search (ISMCTS) with different reward functions and simulation strategies. MCTS requires complete information about the game state and thus implements a cheating player while ISMCTS can deal with incomplete information and thus implements a fair player. Our results show that, as expected, the cheating MCTS outperforms all the other strategies; ISMCTS is stronger than all the rule-based players implementing well-known and most advanced strategies and it also turns out to be a challenging opponent for human players.Comment: Preprint. Accepted for publication in the IEEE Transaction on Game

    Complexity, Heuristic, and Search Analysis for the Games of Crossings and Epaminondas

    Get PDF
    Games provide fertile research domains for algorithmic research. Often, game research helps solve real-world problems through the testing and refinement of search algorithms in game domains. Other times, game research finds limits for certain algorithms. For example, the game of Go proved intractable for the Min-Max with Alpha-Beta pruning algorithm leading to the popularity of Monte-Carlo based search algorithms. Although effective in Go, and game domains once ruled by Alpha-Beta such as Lines of Action, Monte-Carlo methods appear to have limits too as they fall short in tactical domains such as Hex and Chess. In a continuation of this type of research, two new games, Crossings and Epaminondas, are presented, analyzed and used to test two Monte-Carlo based algorithms: Upper Confidence Bounds applied to Trees (UCT) and Heuristic Guided UCT (HUCT). Results indicate that heuristic knowledge can positively affect UCT\u27s performance in the lower complexity domain of Crossings. However, both agents perform worse in the higher complexity domain of Epaminondas. This identifies Epaminondas as another domain that poses difficulties for Monte Carlo agents

    Recent Advances in General Game Playing

    Get PDF
    The goal of General Game Playing (GGP) has been to develop computer programs that can perform well across various game types. It is natural for human game players to transfer knowledge from games they already know how to play to other similar games. GGP research attempts to design systems that work well across different game types, including unknown new games. In this review, we present a survey of recent advances (2011 to 2014) in GGP for both traditional games and video games. It is notable that research on GGP has been expanding into modern video games. Monte-Carlo Tree Search and its enhancements have been the most influential techniques in GGP for both research domains. Additionally, international competitions have become important events that promote and increase GGP research. Recently, a video GGP competition was launched. In this survey, we review recent progress in the most challenging research areas of Artificial Intelligence (AI) related to universal game playing

    Warm-Start AlphaZero Self-Play Search Enhancements

    Get PDF
    Recently, AlphaZero has achieved landmark results in deep reinforcement learning, by providing a single self-play architecture that learned three different games at super human level. AlphaZero is a large and complicated system with many parameters, and success requires much compute power and fine-tuning. Reproducing results in other games is a challenge, and many researchers are looking for ways to improve results while reducing computational demands. AlphaZero's design is purely based on self-play and makes no use of labeled expert data ordomain specific enhancements; it is designed to learn from scratch. We propose a novel approach to deal with this cold-start problem by employing simple search enhancements at the beginning phase of self-play training, namely Rollout, Rapid Action Value Estimate (RAVE) and dynamically weighted combinations of these with the neural network, and Rolling Horizon Evolutionary Algorithms (RHEA). Our experiments indicate that most of these enhancements improve the performance of their baseline player in three different (small) board games, with especially RAVE based variants playing strongly

    The 2016 Two-Player GVGAI Competition

    Get PDF
    This paper showcases the setting and results of the first Two-Player General Video Game AI competition, which ran in 2016 at the IEEE World Congress on Computational Intelligence and the IEEE Conference on Computational Intelligence and Games. The challenges for the general game AI agents are expanded in this track from the single-player version, looking at direct player interaction in both competitive and cooperative environments of various types and degrees of difficulty. The focus is on the agents not only handling multiple problems, but also having to account for another intelligent entity in the game, who is expected to work towards their own goals (winning the game). This other player will possibly interact with first agent in a more engaging way than the environment or any non-playing character may do. The top competition entries are analyzed in detail and the performance of all agents is compared across the four sets of games. The results validate the competition system in assessing generality, as well as showing Monte Carlo Tree Search continuing to dominate by winning the overall Championship. However, this approach is closely followed by Rolling Horizon Evolutionary Algorithms, employed by the winner of the second leg of the contest
    corecore