44,247 research outputs found

    On Phase Transitions to Cooperation in the Prisoner's Dilemma

    Full text link
    Game theory formalizes certain interactions between physical particles or between living beings in biology, sociology, and economics, and quantifies the outcomes by payoffs. The prisoner's dilemma (PD) describes situations in which it is profitable if everybody cooperates rather than defects (free-rides or cheats), but as cooperation is risky and defection is tempting, the expected outcome is defection. Nevertheless, some biological and social mechanisms can support cooperation by effectively transforming the payoffs. Here, we study the related phase transitions, which can be of first order (discontinous) or of second order (continuous), implying a variety of different routes to cooperation. After classifying the transitions into cases of equilibrium displacement, equilibrium selection, and equilibrium creation, we show that a transition to cooperation may take place even if the stationary states and the eigenvalues of the replicator equation for the PD stay unchanged. Our example is based on adaptive group pressure, which makes the payoffs dependent on the endogeneous dynamics in the population. The resulting bistability can invert the expected outcome in favor of cooperation.Comment: For related work see http://www.soms.ethz.ch

    Adaptive Regret Minimization in Bounded-Memory Games

    Get PDF
    Online learning algorithms that minimize regret provide strong guarantees in situations that involve repeatedly making decisions in an uncertain environment, e.g. a driver deciding what route to drive to work every day. While regret minimization has been extensively studied in repeated games, we study regret minimization for a richer class of games called bounded memory games. In each round of a two-player bounded memory-m game, both players simultaneously play an action, observe an outcome and receive a reward. The reward may depend on the last m outcomes as well as the actions of the players in the current round. The standard notion of regret for repeated games is no longer suitable because actions and rewards can depend on the history of play. To account for this generality, we introduce the notion of k-adaptive regret, which compares the reward obtained by playing actions prescribed by the algorithm against a hypothetical k-adaptive adversary with the reward obtained by the best expert in hindsight against the same adversary. Roughly, a hypothetical k-adaptive adversary adapts her strategy to the defender's actions exactly as the real adversary would within each window of k rounds. Our definition is parametrized by a set of experts, which can include both fixed and adaptive defender strategies. We investigate the inherent complexity of and design algorithms for adaptive regret minimization in bounded memory games of perfect and imperfect information. We prove a hardness result showing that, with imperfect information, any k-adaptive regret minimizing algorithm (with fixed strategies as experts) must be inefficient unless NP=RP even when playing against an oblivious adversary. In contrast, for bounded memory games of perfect and imperfect information we present approximate 0-adaptive regret minimization algorithms against an oblivious adversary running in time n^{O(1)}.Comment: Full Version. GameSec 2013 (Invited Paper

    Distributed Synthesis in Continuous Time

    Get PDF
    We introduce a formalism modelling communication of distributed agents strictly in continuous-time. Within this framework, we study the problem of synthesising local strategies for individual agents such that a specified set of goal states is reached, or reached with at least a given probability. The flow of time is modelled explicitly based on continuous-time randomness, with two natural implications: First, the non-determinism stemming from interleaving disappears. Second, when we restrict to a subclass of non-urgent models, the quantitative value problem for two players can be solved in EXPTIME. Indeed, the explicit continuous time enables players to communicate their states by delaying synchronisation (which is unrestricted for non-urgent models). In general, the problems are undecidable already for two players in the quantitative case and three players in the qualitative case. The qualitative undecidability is shown by a reduction to decentralized POMDPs for which we provide the strongest (and rather surprising) undecidability result so far

    Analyzing three-player quantum games in an EPR type setup

    Get PDF
    We use the formalism of Clifford Geometric Algebra (GA) to develop an analysis of quantum versions of three-player non-cooperative games. The quantum games we explore are played in an Einstein-Podolsky-Rosen (EPR) type setting. In this setting, the players' strategy sets remain identical to the ones in the mixed-strategy version of the classical game that is obtained as a proper subset of the corresponding quantum game. Using GA we investigate the outcome of a realization of the game by players sharing GHZ state, W state, and a mixture of GHZ and W states. As a specific example, we study the game of three-player Prisoners' Dilemma.Comment: 21 pages, 3 figure

    Analyzing three-player quantum games in an EPR type setup

    Get PDF
    We use the formalism of Clifford Geometric Algebra (GA) to develop an analysis of quantum versions of three-player non-cooperative games. The quantum games we explore are played in an Einstein-Podolsky-Rosen (EPR) type setting. In this setting, the players' strategy sets remain identical to the ones in the mixed-strategy version of the classical game that is obtained as a proper subset of the corresponding quantum game. Using GA we investigate the outcome of a realization of the game by players sharing GHZ state, W state, and a mixture of GHZ and W states. As a specific example, we study the game of three-player Prisoners' Dilemma.Comment: 21 pages, 3 figure

    Incentive Stackelberg Mean-payoff Games

    Get PDF
    We introduce and study incentive equilibria for multi-player meanpayoff games. Incentive equilibria generalise well-studied solution concepts such as Nash equilibria and leader equilibria (also known as Stackelberg equilibria). Recall that a strategy profile is a Nash equilibrium if no player can improve his payoff by changing his strategy unilaterally. In the setting of incentive and leader equilibria, there is a distinguished player called the leader who can assign strategies to all other players, referred to as her followers. A strategy profile is a leader strategy profile if no player, except for the leader, can improve his payoff by changing his strategy unilaterally, and a leader equilibrium is a leader strategy profile with a maximal return for the leader. In the proposed case of incentive equilibria, the leader can additionally influence the behaviour of her followers by transferring parts of her payoff to her followers. The ability to incentivise her followers provides the leader with more freedom in selecting strategy profiles, and we show that this can indeed improve the payoff for the leader in such games. The key fundamental result of the paper is the existence of incentive equilibria in mean-payoff games. We further show that the decision problem related to constructing incentive equilibria is NP-complete. On a positive note, we show that, when the number of players is fixed, the complexity of the problem falls in the same class as two-player mean-payoff games. We also present an implementation of the proposed algorithms, and discuss experimental results that demonstrate the feasibility of the analysis of medium sized games.Comment: 15 pages, references, appendix, 5 figure

    Forgery-Resistant Touch-based Authentication on Mobile Devices

    Full text link
    Mobile devices store a diverse set of private user data and have gradually become a hub to control users' other personal Internet-of-Things devices. Access control on mobile devices is therefore highly important. The widely accepted solution is to protect access by asking for a password. However, password authentication is tedious, e.g., a user needs to input a password every time she wants to use the device. Moreover, existing biometrics such as face, fingerprint, and touch behaviors are vulnerable to forgery attacks. We propose a new touch-based biometric authentication system that is passive and secure against forgery attacks. In our touch-based authentication, a user's touch behaviors are a function of some random "secret". The user can subconsciously know the secret while touching the device's screen. However, an attacker cannot know the secret at the time of attack, which makes it challenging to perform forgery attacks even if the attacker has already obtained the user's touch behaviors. We evaluate our touch-based authentication system by collecting data from 25 subjects. Results are promising: the random secrets do not influence user experience and, for targeted forgery attacks, our system achieves 0.18 smaller Equal Error Rates (EERs) than previous touch-based authentication.Comment: Accepted for publication by ASIACCS'1
    • …
    corecore