6 research outputs found

    Comments on Micorpayment Schemes for Multi-Merchants with Anonymity and Untraceability

    Get PDF
    [[conferencetype]]國內[[conferencedate]]20120530~20120531[[booktype]]電子版[[iscallforpapers]]Y[[conferencelocation]]Taichung, Taiwa

    Reliable OSPM schema for secure transaction using mobile agent in micropayment system

    Get PDF
    The paper introduces a novel offline payment system in mobile commerce using the case study of micro-payments. The present paper is an extension version of our prior study addressing on implication of secure micropayment system deploying process oriented structural design in mobile network. The previous system has broad utilization of SPKI and hash chaining to furnish reliable and secure offline transaction in mobile commerce. However, the current work has attempted to provide much more light weight secure offline payment system in micro-payments by designing a new schema termed as Offline Secure Payment in Mobile Commerce (OSPM). The empirical operation are carried out on three types of transaction process considering maximum scenario of real time offline cases. Therefore, the current idea introduces two new parameters i.e. mobile agent and mobile token that can ensure better security and comparatively less network overhead

    Secure and seamless prepayment for wireless mesh networks

    Get PDF
    Wireless Mesh Network (WMN) is multi-hop high-speed networking technology for broadband access. Compared to conventional network service providing systems, WMNs are easy to deploy and cost-effective. In this thesis, we propose a secure and seamless prepayment system for the Internet access through WMNs (SSPayWMN). Practical payment systems for network access generally depend on trustworthiness of service provider. However, in real life, service providers may unintentionally overcharge their clients. This misbehavior in the system may cause disputes between the clients and the service providers. Even if the service provider is rightful, it is very difficult to convince the customer since the service providers generally do not have justifiable proofs that can easily be denied by the clients. The main goal of SSPayWMN is to provide a secure payment scheme, which is fair to both operators and clients. Using cryptographic tools and techniques, all system entities are able to authenticate each other and provide/get service in an undeniable way. Moreover, SSPayWMN provides privacy and untraceability in order not to track down particular user’s network activities. We implemented SSPayWMN on a network simulator (ns-3) and performed performance evaluation to understand the latency caused by the system's protocols. Our results show that our protocols achieve low steady state latency and in overall put very little burden on the system
    corecore