2,323 research outputs found

    Multilevel Approach For Signal Restoration Problems With Toeplitz Matrices

    Get PDF
    We present a multilevel method for discrete ill-posed problems arising from the discretization of Fredholm integral equations of the first kind. In this method, we use the Haar wavelet transform to define restriction and prolongation operators within a multigrid-type iteration. The choice of the Haar wavelet operator has the advantage of preserving matrix structure, such as Toeplitz, between grids, which can be exploited to obtain faster solvers on each level where an edge-preserving Tikhonov regularization is applied. Finally, we present results that indicate the promise of this approach for restoration of signals and images with edges

    Regularized adaptive long autoregressive spectral analysis

    Full text link
    This paper is devoted to adaptive long autoregressive spectral analysis when (i) very few data are available, (ii) information does exist beforehand concerning the spectral smoothness and time continuity of the analyzed signals. The contribution is founded on two papers by Kitagawa and Gersch. The first one deals with spectral smoothness, in the regularization framework, while the second one is devoted to time continuity, in the Kalman formalism. The present paper proposes an original synthesis of the two contributions: a new regularized criterion is introduced that takes both information into account. The criterion is efficiently optimized by a Kalman smoother. One of the major features of the method is that it is entirely unsupervised: the problem of automatically adjusting the hyperparameters that balance data-based versus prior-based information is solved by maximum likelihood. The improvement is quantified in the field of meteorological radar

    Signal reconstruction via operator guiding

    Full text link
    Signal reconstruction from a sample using an orthogonal projector onto a guiding subspace is theoretically well justified, but may be difficult to practically implement. We propose more general guiding operators, which increase signal components in the guiding subspace relative to those in a complementary subspace, e.g., iterative low-pass edge-preserving filters for super-resolution of images. Two examples of super-resolution illustrate our technology: a no-flash RGB photo guided using a high resolution flash RGB photo, and a depth image guided using a high resolution RGB photo.Comment: 5 pages, 8 figures. To appear in Proceedings of SampTA 2017: Sampling Theory and Applications, 12th International Conference, July 3-7, 2017, Tallinn, Estoni

    A GCV based Arnoldi-Tikhonov regularization method

    Full text link
    For the solution of linear discrete ill-posed problems, in this paper we consider the Arnoldi-Tikhonov method coupled with the Generalized Cross Validation for the computation of the regularization parameter at each iteration. We study the convergence behavior of the Arnoldi method and its properties for the approximation of the (generalized) singular values, under the hypothesis that Picard condition is satisfied. Numerical experiments on classical test problems and on image restoration are presented

    Bayesian interpretation of periodograms

    Full text link
    The usual nonparametric approach to spectral analysis is revisited within the regularization framework. Both usual and windowed periodograms are obtained as the squared modulus of the minimizer of regularized least squares criteria. Then, particular attention is paid to their interpretation within the Bayesian statistical framework. Finally, the question of unsupervised hyperparameter and window selection is addressed. It is shown that maximum likelihood solution is both formally achievable and practically useful
    corecore