9,190 research outputs found

    Is Structure Necessary for Modeling Argument Expectations in Distributional Semantics?

    Full text link
    Despite the number of NLP studies dedicated to thematic fit estimation, little attention has been paid to the related task of composing and updating verb argument expectations. The few exceptions have mostly modeled this phenomenon with structured distributional models, implicitly assuming a similarly structured representation of events. Recent experimental evidence, however, suggests that human processing system could also exploit an unstructured "bag-of-arguments" type of event representation to predict upcoming input. In this paper, we re-implement a traditional structured model and adapt it to compare the different hypotheses concerning the degree of structure in our event knowledge, evaluating their relative performance in the task of the argument expectations update.Comment: conference paper, IWC

    Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks

    Full text link
    Because of their superior ability to preserve sequence information over time, Long Short-Term Memory (LSTM) networks, a type of recurrent neural network with a more complex computational unit, have obtained strong results on a variety of sequence modeling tasks. The only underlying LSTM structure that has been explored so far is a linear chain. However, natural language exhibits syntactic properties that would naturally combine words to phrases. We introduce the Tree-LSTM, a generalization of LSTMs to tree-structured network topologies. Tree-LSTMs outperform all existing systems and strong LSTM baselines on two tasks: predicting the semantic relatedness of two sentences (SemEval 2014, Task 1) and sentiment classification (Stanford Sentiment Treebank).Comment: Accepted for publication at ACL 201

    Experimental Support for a Categorical Compositional Distributional Model of Meaning

    Full text link
    Modelling compositional meaning for sentences using empirical distributional methods has been a challenge for computational linguists. We implement the abstract categorical model of Coecke et al. (arXiv:1003.4394v1 [cs.CL]) using data from the BNC and evaluate it. The implementation is based on unsupervised learning of matrices for relational words and applying them to the vectors of their arguments. The evaluation is based on the word disambiguation task developed by Mitchell and Lapata (2008) for intransitive sentences, and on a similar new experiment designed for transitive sentences. Our model matches the results of its competitors in the first experiment, and betters them in the second. The general improvement in results with increase in syntactic complexity showcases the compositional power of our model.Comment: 11 pages, to be presented at EMNLP 2011, to be published in Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processin

    "Not not bad" is not "bad": A distributional account of negation

    Full text link
    With the increasing empirical success of distributional models of compositional semantics, it is timely to consider the types of textual logic that such models are capable of capturing. In this paper, we address shortcomings in the ability of current models to capture logical operations such as negation. As a solution we propose a tripartite formulation for a continuous vector space representation of semantics and subsequently use this representation to develop a formal compositional notion of negation within such models.Comment: 9 pages, to appear in Proceedings of the 2013 Workshop on Continuous Vector Space Models and their Compositionalit

    Semantics, Modelling, and the Problem of Representation of Meaning -- a Brief Survey of Recent Literature

    Full text link
    Over the past 50 years many have debated what representation should be used to capture the meaning of natural language utterances. Recently new needs of such representations have been raised in research. Here I survey some of the interesting representations suggested to answer for these new needs.Comment: 15 pages, no figure

    A Convolutional Neural Network for Modelling Sentences

    Full text link
    The ability to accurately represent sentences is central to language understanding. We describe a convolutional architecture dubbed the Dynamic Convolutional Neural Network (DCNN) that we adopt for the semantic modelling of sentences. The network uses Dynamic k-Max Pooling, a global pooling operation over linear sequences. The network handles input sentences of varying length and induces a feature graph over the sentence that is capable of explicitly capturing short and long-range relations. The network does not rely on a parse tree and is easily applicable to any language. We test the DCNN in four experiments: small scale binary and multi-class sentiment prediction, six-way question classification and Twitter sentiment prediction by distant supervision. The network achieves excellent performance in the first three tasks and a greater than 25% error reduction in the last task with respect to the strongest baseline
    • …
    corecore