13,258 research outputs found

    A Logic Simplification Approach for Very Large Scale Crosstalk Circuit Designs

    Full text link
    Crosstalk computing, involving engineered interference between nanoscale metal lines, offers a fresh perspective to scaling through co-existence with CMOS. Through capacitive manipulations and innovative circuit style, not only primitive gates can be implemented, but custom logic cells such as an Adder, Subtractor can be implemented with huge gains. Our simulations show over 5x density and 2x power benefits over CMOS custom designs at 16nm [1]. This paper introduces the Crosstalk circuit style and a key method for large-scale circuit synthesis utilizing existing EDA tool flow. We propose to manipulate the CMOS synthesis flow by adding two extra steps: conversion of the gate-level netlist to Crosstalk implementation friendly netlist through logic simplification and Crosstalk gate mapping, and the inclusion of custom cell libraries for automated placement and layout. Our logic simplification approach first converts Cadence generated structured netlist to Boolean expressions and then uses the majority synthesis tool to obtain majority functions, which is further used to simplify functions for Crosstalk friendly implementations. We compare our approach of logic simplification to that of CMOS and majority logic-based approaches. Crosstalk circuits share some similarities to majority synthesis that are typically applied to Quantum Cellular Automata technology. However, our investigation shows that by closely following Crosstalk's core circuit styles, most benefits can be achieved. In the best case, our approach shows 36% density improvements over majority synthesis for MCNC benchmark

    Yield Model Characterization For Analog Integrated Circuit Using Pareto-Optimal Surface

    No full text
    A novel technique is proposed in this paper that achieves a yield optimized design from a set of optimal performance points on the Pareto front. Trade-offs among performance functions are explored through multi-objective optimization and Monte Carlo simulation is used to find the design point producing the best overall yield. One advantage of the approach presented is a reduction in the computational cost normally associated with Monte Carlo simulation. The technique offers a yield optimized robust circuit design solution with transistor level accuracy. An example using an OTA is presented to demonstrate the effectiveness of the work

    Challenging the evolutionary strategy for synthesis of analogue computational circuits

    Get PDF
    There are very few reports in the past on applications of Evolutionary Strategy (ES) towards the synthesis of analogue circuits. Moreover, even fewer reports are on the synthesis of computational circuits. Last fact is mainly due to the dif-ficulty in designing of the complex nonlinear functions that these circuits perform. In this paper, the evolving power of the ES is challenged to design four computational circuits: cube root, cubing, square root and squaring functions. The synthesis succeeded due to the usage of oscillating length genotype strategy and the substructure reuse. The approach is characterized by its simplicity and represents one of the first attempts of application of ES towards the synthesis of “QR” circuits. The obtained experimental results significantly exceed the results published before in terms of the circuit quality, economy in components and computing resources utilized, revealing the great potential of the technique pro-posed to design large scale analog circuits
    • …
    corecore