311,785 research outputs found

    Wireless sensor networks using network coding for structural health monitoring

    Get PDF
    Wireless Sensor Networks (WSNs) have been deployed for the purpose of structural health monitoring (SHM) of civil engineering structures, e.g. bridges. SHM applications can potentially produce a high volume of sensing data, which consumes much transmission power and thus decreases the lifetime of the battery-run networks. We employ the network coding technique to improve the network efficiency and prolong its lifetime. By increasing the transmission power, we change the node connectivity and control the number of nodes that can overhear transmitted messages so as to hopefully realize the capacity gain by use of network coding. In Chapter 1, we present the background, to enable the reader to understand the need for SHM, advantages and drawbacks of WSNs and potential the application of network coding techniques has. In Chapter 2 we provide a review of related research explaining how it relates to our work, and why it is not fully applicable in our case. In Chapter 3, we propose to control transmission power as a means to adjust the number of nodes that can overhear a message transmission by a neighbouring node. However, too much of the overhearing by high power transmission consumes aggressively limited battery energy. We investigate the interplay between transmission power and network coding operations in Chapter 4. We show that our solution reduces the overall volume of data transfer, thus leading to significant energy savings and prolonged network lifetime. We present the mathematical analysis of our proposed algorithm. By simulation, we also study the trade-offs between overhearing and power consumption for the network coding scheme. In Chapter 5, we propose a methodology for the optimal placement of sensor nodes in linear network topologies (e.g., along the length of a bridge), that aims to minimise the link connectivity problems and maximise the lifetime of the network. Both simple packet relay and network coding are considered for the routing of the collected data packets towards two sink nodes positioned at both ends of the bridge. Our mathematical analysis, verified by simulation results, shows that the proposed methodology can lead to significant energy saving and prolong the lifetime of the underlying wireless sensor network. Chapter 6 is dedicated to the delay analysis. We analytically calculate the gains in terms of packet delay obtained by the use of network coding in linear multi-hop wireless sensor network topologies. Moreover, we calculate the exact packet delay (from the packet generation time to the time it is delivered to the sink nodes) as a function of the location of the source sensor node within the linear network. The derived packet delay distribution formulas have been verified by simulations and can provide a benchmark for the delay performance of linear sensor networks. In the Chapter 7, we propose an adaptive version of network coding based algorithm. In the case of packet loss, nodes do not necessary retransmit messages as they are able to internally decide how to cope with the situation. The goal of this algorithm is to reduce the power consumption, and decrease delays whenever it can. This algorithm achieves the delay similar to that of three-hop direct-connectivity version of the deterministic algorithm, and consumes power almost like one-hop direct-connectivity version of deterministic algorithm. In very poor channel conditions, this protocol outperforms the deterministic algorithm both in terms of delay and power consumption. In Chapter 8, we explain the direction of our future work. Particularly, we are interested in the application of combined TDMA/FDMA technique to our algorithm.Open Acces

    Identification of dynamical transitions in marine palaeoclimate records by recurrence network analysis

    Get PDF
    The analysis of palaeoclimate time series is usually affected by severe methodological problems, resulting primarily from non-equidistant sampling and uncertain age models. As an alternative to existing methods of time series analysis, in this paper we argue that the statistical properties of recurrence networks - a recently developed approach - are promising candidates for characterising the system's nonlinear dynamics and quantifying structural changes in its reconstructed phase space as time evolves. In a first order approximation, the results of recurrence network analysis are invariant to changes in the age model and are not directly affected by non-equidistant sampling of the data. Specifically, we investigate the behaviour of recurrence network measures for both paradigmatic model systems with non-stationary parameters and four marine records of long-term palaeoclimate variations. We show that the obtained results are qualitatively robust under changes of the relevant parameters of our method, including detrending, size of the running window used for analysis, and embedding delay. We demonstrate that recurrence network analysis is able to detect relevant regime shifts in synthetic data as well as in problematic geoscientific time series. This suggests its application as a general exploratory tool of time series analysis complementing existing methods

    Understanding and Predicting Delay in Reciprocal Relations

    Full text link
    Reciprocity in directed networks points to user's willingness to return favors in building mutual interactions. High reciprocity has been widely observed in many directed social media networks such as following relations in Twitter and Tumblr. Therefore, reciprocal relations between users are often regarded as a basic mechanism to create stable social ties and play a crucial role in the formation and evolution of networks. Each reciprocity relation is formed by two parasocial links in a back-and-forth manner with a time delay. Hence, understanding the delay can help us gain better insights into the underlying mechanisms of network dynamics. Meanwhile, the accurate prediction of delay has practical implications in advancing a variety of real-world applications such as friend recommendation and marketing campaign. For example, by knowing when will users follow back, service providers can focus on the users with a potential long reciprocal delay for effective targeted marketing. This paper presents the initial investigation of the time delay in reciprocal relations. Our study is based on a large-scale directed network from Tumblr that consists of 62.8 million users and 3.1 billion user following relations with a timespan of multiple years (from 31 Oct 2007 to 24 Jul 2013). We reveal a number of interesting patterns about the delay that motivate the development of a principled learning model to predict the delay in reciprocal relations. Experimental results on the above mentioned dynamic networks corroborate the effectiveness of the proposed delay prediction model.Comment: 10 page
    corecore