11,211 research outputs found

    Self-Organizing Time Map: An Abstraction of Temporal Multivariate Patterns

    Full text link
    This paper adopts and adapts Kohonen's standard Self-Organizing Map (SOM) for exploratory temporal structure analysis. The Self-Organizing Time Map (SOTM) implements SOM-type learning to one-dimensional arrays for individual time units, preserves the orientation with short-term memory and arranges the arrays in an ascending order of time. The two-dimensional representation of the SOTM attempts thus twofold topology preservation, where the horizontal direction preserves time topology and the vertical direction data topology. This enables discovering the occurrence and exploring the properties of temporal structural changes in data. For representing qualities and properties of SOTMs, we adapt measures and visualizations from the standard SOM paradigm, as well as introduce a measure of temporal structural changes. The functioning of the SOTM, and its visualizations and quality and property measures, are illustrated on artificial toy data. The usefulness of the SOTM in a real-world setting is shown on poverty, welfare and development indicators

    Evolutionary Neural Gas (ENG): A Model of Self Organizing Network from Input Categorization

    Full text link
    Despite their claimed biological plausibility, most self organizing networks have strict topological constraints and consequently they cannot take into account a wide range of external stimuli. Furthermore their evolution is conditioned by deterministic laws which often are not correlated with the structural parameters and the global status of the network, as it should happen in a real biological system. In nature the environmental inputs are noise affected and fuzzy. Which thing sets the problem to investigate the possibility of emergent behaviour in a not strictly constrained net and subjected to different inputs. It is here presented a new model of Evolutionary Neural Gas (ENG) with any topological constraints, trained by probabilistic laws depending on the local distortion errors and the network dimension. The network is considered as a population of nodes that coexist in an ecosystem sharing local and global resources. Those particular features allow the network to quickly adapt to the environment, according to its dimensions. The ENG model analysis shows that the net evolves as a scale-free graph, and justifies in a deeply physical sense- the term gas here used.Comment: 16 pages, 8 figure

    Tilt Aftereffects in a Self-Organizing Model of the Primary Visual Cortex

    Get PDF
    RF-LISSOM, a self-organizing model of laterally connected orientation maps in the primary visual cortex, was used to study the psychological phenomenon known as the tilt aftereffect. The same self-organizing processes that are responsible for the long-term development of the map are shown to result in tilt aftereffects over short time scales in the adult. The model permits simultaneous observation of large numbers of neurons and connections, making it possible to relate high-level phenomena to low-level events, which is difficult to do experimentally. The results give detailed computational support for the long-standing conjecture that the direct tilt aftereffect arises from adaptive lateral interactions between feature detectors. They also make a new prediction that the indirect effect results from the normalization of synaptic efficacies during this process. The model thus provides a unified computational explanation of self-organization and both the direct and indirect tilt aftereffect in the primary visual cortex

    Self-organizing input space for control of structures

    Get PDF
    We propose a novel type of neural networks for structural control, which comprises an adaptive input space. This feature is purposefully designed for sequential input selection during adaptive identification and control of nonlinear systems, which allows the input space to be organized dynamically, while the excitation is occurring. The neural network has the main advantages of (1) automating the input selection process for time series that are not known a priori; (2) adapting the representation to nonstationarities; and (3) using limited observations. The algorithm designed for the adaptive input space assumes local quasi-stationarity of the time series, and embeds local maps sequentially in a delay vector using the embedding theorem. The input space of the representation, which in our case is a wavelet neural network, is subsequently updated. We demonstrate that the neural net has the potential to significantly improve convergence of a black-box model in adaptive tracking of a nonlinear system. Its performance is further assessed in a full-scale simulation of an existing civil structure subjected to nonstationary excitations (wind and earthquakes), and shows the superiority of the proposed method

    Self-Organizing Grammar Induction Using a Neural Network Model

    Full text link
    This paper presents a self-organizing, real-time, hierarchical neural network model of sequential processing, and shows how it can be used to induce recognition codes corresponding to word categories and elementary grammatical structures. The model, first introduced in Mannes (1992), learns to recognize, store, and recall sequences of unitized patterns in a stable manner, either using short-term memory alone, or using long-term memory weights. Memory capacity is only limited by the number of nodes provided. Sequences are mapped to unitized patterns, making the model suitable for hierarchical operation. By using multiple modules arranged in a hierarchy and a simple mapping between output of lower levels and the input of higher levels, the induction of codes representing word category and simple phrase structures is an emergent property of the model. Simulation results are reported to illustrate this behavior.National Science Foundation (IRI-9024877

    Extranoematic artifacts: neural systems in space and topology

    Get PDF
    During the past several decades, the evolution in architecture and engineering went through several stages of exploration of form. While the procedures of generating the form have varied from using physical analogous form-finding computation to engaging the form with simulated dynamic forces in digital environment, the self-generation and organization of form has always been the goal. this thesis further intend to contribute to self-organizational capacity in Architecture. The subject of investigation is the rationalizing of geometry from an unorganized point cloud by using learning neural networks. Furthermore, the focus is oriented upon aspects of efficient construction of generated topology. Neural network is connected with constraining properties, which adjust the members of the topology into predefined number of sizes while minimizing the error of deviation from the original form. The resulted algorithm is applied in several different scenarios of construction, highlighting the possibilities and versatility of this method
    • …
    corecore