1,198 research outputs found

    Serving GODAE Data and Products to the Ocean Community

    Get PDF
    The Global Ocean Data Assimilation Experiment (GODAE [http:// www.godae.org]) has spanned a decade of rapid technological development. The ever-increasing volume and diversity of oceanographic data produced by in situ instruments, remote-sensing platforms, and computer simulations have driven the development of a number of innovative technologies that are essential for connecting scientists with the data that they need. This paper gives an overview of the technologies that have been developed and applied in the course of GODAE, which now provide users of oceanographic data with the capability to discover, evaluate, visualize, download, and analyze data from all over the world. The key to this capability is the ability to reduce the inherent complexity of oceanographic data by providing a consistent, harmonized view of the various data products. The challenges of data serving have been addressed over the last 10 years through the cooperative skills and energies of many individuals

    ESG-CET Final Progress Title

    Full text link

    Gráfico de contorno preenchido: solução para a representação sintética de um conjunto de imagens de satélite.

    Get PDF
    Imagens de satélite podem ser obtidas sobre extensas áreas da superfície terrestre e têm grande utilidade no monitoramento do uso do solo. Uma região, definida por contornos geopolíticos, pode ser imageada diversas vezes por um mesmo sensor ao longo de um intervalo de tempo, como o ano civil, produzindo um enorme e rico volume de dados, mas cuja interpretação conjunta é complexa. O objetivo do presente trabalho foi o de apresentar uma forma de visualização de dados de sensoriamento remoto, relativamente simples, que permite reunir em um único gráfico de contorno preenchido (filled contour plot), informações de diversas imagens obtidas ao longo de um período de tempo sobre uma região. Para ilustrar a técnica proposta, dados do índice de vegetação EVI2 de quatro municípios do Estado de São Paulo, obtidos a partir de 23 imagens MODIS/Terra datadas de 2008, foram analisados. Os resultados permitem afirmar que é possível associar, de maneira lógica, o aspecto do gráfico e o uso predominante do solo, ao se considerar a fenologia e o manejo das principais atividades agrícolas dos municípios estudados. A principal vantagem do método gráfico apresentado é que ele permite resumir, em uma única figura, o comportamento espectral (nesse caso, o EVI2), em uma região geopolítica (município), durante um período de tempo(ano), representado por várias imagens (23). Assim, torna-se possível comparar conjuntos de imagens obtidas durante períodos de duração variada, entre regiões de tamanhos e formas diferentes, como os municípios, utilizando sempre um mesmo padrão gráfico de fácil visualização e interpretação

    A multi-decade record of high quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT)

    Get PDF
    The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) “living data” publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014). Individual data set files, included in the synthesis product, can be downloaded here: doi:10.1594/PANGAEA.849770. The gridded products are available here: doi:10.3334/CDIAC/OTG.SOCAT_V3_GRID

    Robust Off- and Online Separation of Intracellularly Recorded Up and Down Cortical States

    Get PDF
    BACKGROUND: The neuronal cortical network generates slow (<1 Hz) spontaneous rhythmic activity that emerges from the recurrent connectivity. This activity occurs during slow wave sleep or anesthesia and also in cortical slices, consisting of alternating up (active, depolarized) and down (silent, hyperpolarized) states. The search for the underlying mechanisms and the possibility of analyzing network dynamics in vitro has been subject of numerous studies. This exposes the need for a detailed quantitative analysis of the membrane fluctuating behavior and computerized tools to automatically characterize the occurrence of up and down states. METHODOLOGY/PRINCIPAL FINDINGS: Intracellular recordings from different areas of the cerebral cortex were obtained from both in vitro and in vivo preparations during slow oscillations. A method that separates up and down states recorded intracellularly is defined and analyzed here. The method exploits the crossover of moving averages, such that transitions between up and down membrane regimes can be anticipated based on recent and past voltage dynamics. We demonstrate experimentally the utility and performance of this method both offline and online, the online use allowing to trigger stimulation or other events in the desired period of the rhythm. This technique is compared with a histogram-based approach that separates the states by establishing one or two discriminating membrane potential levels. The robustness of the method presented here is tested on data that departs from highly regular alternating up and down states. CONCLUSIONS/SIGNIFICANCE: We define a simple method to detect cortical states that can be applied in real time for offline processing of large amounts of recorded data on conventional computers. Also, the online detection of up and down states will facilitate the study of cortical dynamics. An open-source MATLAB toolbox, and Spike 2-compatible version are made freely available

    スケジューリング遅延に基づいたタスク並列ランタイムシステムの性能差の解析

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学准教授 豊田 正史, 東京大学教授 田浦 健次朗, 東京大学准教授 入江 英嗣, 東京大学教授 中島 研吾, 理化学研究所チームリーダ 佐藤 三久, 東京工業大学准教授 横田 理央University of Tokyo(東京大学

    Rapid evolution of A(H5N1) influenza viruses after intercontinental spread to North America

    Get PDF
    Highly pathogenic avian influenza A(H5N1) viruses of clade 2.3.4.4b underwent an explosive geographic expansion in 2021 among wild birds and domestic poultry across Asia, Europe, and Africa. By the end of 2021, 2.3.4.4b viruses were detected in North America, signifying further intercontinental spread. Here we show that the western movement of clade 2.3.4.4b was quickly followed by reassortment with viruses circulating in wild birds in North America, resulting in the acquisition of different combinations of ribonucleoprotein genes. These reassortant A(H5N1) viruses are genotypically and phenotypically diverse, with many causing severe disease with dramatic neurologic involvement in mammals. The proclivity of the current A(H5N1) 2.3.4.4b virus lineage to reassort and target the central nervous system warrants concerted planning to combat the spread and evolution of the virus within the continent and to mitigate the impact of a potential influenza pandemic that could originate from similar A(H5N1) reassortants

    NERSC 'Visualization Greenbook' Future visualization needs of the DOE computational science community hosted at NERSC

    Full text link

    Regulation of blood vessel stiffness by focal adhesions of vascular smooth muscle

    Full text link
    Thesis (Ph.D.)--Boston UniversityThe operation of the cardiovascular system is inherently mechanical. Changes in the stiffness of the vascular tree have been implicated in various pathophysiologic states, and increased aortic stiffening with age is an acknowledged biomarker and cause of cardiovascular disease. However, the sources and mechanisms of vascular stiffness are not well understood. While the extracellular matrix is generally regarded as the major component, little is known regarding how contractile, differentiated vascular smooth muscle cells (VSMCs) contribute to blood vessel stiffness. In this dissertation, I employed a multi-scale approach to test the hypothesis that VSM focal adhesions (FAs), subcellular structures linking the cortical cytoskeleton to the surrounding matrix, dynamically regulate the stiffness of veins and arteries. First, I measured cortical stiffness in VSMCs, which along with FA size, increased in response to contractile activation in a Src-dependent manner. To directly test the applicability of these results to tension and stiffness development at a higher length scale, I examined vascular mechanics by applying small sinusoidal stretches to vascular tissue. Agonistinduced contraction increased tissue stress and stiffness in a Src- and FAK-dependent manner. Subsequent phosphotyrosine screening and follow-up with phosphosite-specific antibodies confirmed the involvement of FA proteins, including FAK, Src, CAS, and paxillin. Taken together, these results identify the FA of the VSMC, in particular the F AK-Src signaling complex, as a significant regulator of vascular stiffness and stress, although the details of this regulation were found to differ between arteries and veins. To examine the role of focal adhesions in cardiovascular disease, I performed additional experiments in an aging model that suggest aberrant FA signaling may be an important component of aging induced cardiovascular disease. With the ultimate goal of reducing vascular stiffness by disrupting FA protein-protein interactions, I screened several candidate decoy peptides using a high-throughput cell-based assay. Overall, this work documents the FA as a regulator of vascular stiffness and a potential novel therapeutic target for stiffness in cardiovascular disease
    corecore