60,118 research outputs found

    “Efficiency Flooding”: Black-Box Frontiers and Policy Implications

    Get PDF
    This research aims to comtribute to the discussion on the importance of theoretically consistent modelling for stochastic efficiency analysis. The robustness of policy suggestions based on inferences from efficiency measures crucially depends on theoretically well-founded estimates. The theoretical consistency of recently published technical efficiency estimates for different sectors and countries is critically reviewed. The results confirm the need for a posteriori checking the regularity of the estimated frontier by the researcher and, if necessary, the a priori imposition of the theoretical requirements.Efficiency Analysis, Functional Form, Mathematical Modelling

    A Survey on Software Testing Techniques using Genetic Algorithm

    Full text link
    The overall aim of the software industry is to ensure delivery of high quality software to the end user. To ensure high quality software, it is required to test software. Testing ensures that software meets user specifications and requirements. However, the field of software testing has a number of underlying issues like effective generation of test cases, prioritisation of test cases etc which need to be tackled. These issues demand on effort, time and cost of the testing. Different techniques and methodologies have been proposed for taking care of these issues. Use of evolutionary algorithms for automatic test generation has been an area of interest for many researchers. Genetic Algorithm (GA) is one such form of evolutionary algorithms. In this research paper, we present a survey of GA approach for addressing the various issues encountered during software testing.Comment: 13 Page

    The SOS Platform: Designing, Tuning and Statistically Benchmarking Optimisation Algorithms

    Get PDF
    open access articleWe present Stochastic Optimisation Software (SOS), a Java platform facilitating the algorithmic design process and the evaluation of metaheuristic optimisation algorithms. SOS reduces the burden of coding miscellaneous methods for dealing with several bothersome and time-demanding tasks such as parameter tuning, implementation of comparison algorithms and testbed problems, collecting and processing data to display results, measuring algorithmic overhead, etc. SOS provides numerous off-the-shelf methods including: (1) customised implementations of statistical tests, such as the Wilcoxon rank-sum test and the Holm–Bonferroni procedure, for comparing the performances of optimisation algorithms and automatically generating result tables in PDF and formats; (2) the implementation of an original advanced statistical routine for accurately comparing couples of stochastic optimisation algorithms; (3) the implementation of a novel testbed suite for continuous optimisation, derived from the IEEE CEC 2014 benchmark, allowing for controlled activation of the rotation on each testbed function. Moreover, we briefly comment on the current state of the literature in stochastic optimisation and highlight similarities shared by modern metaheuristics inspired by nature. We argue that the vast majority of these algorithms are simply a reformulation of the same methods and that metaheuristics for optimisation should be simply treated as stochastic processes with less emphasis on the inspiring metaphor behind them

    A Bayesian Framework for Parameter Estimation in Dynamical Models with Applications to Forecasting

    Get PDF
    Mathematical models in Biology are powerful tools for the study and exploration of complex dynamics. Nevertheless, bringing theoretical results to an agreement with experimental observations involves acknowledging a great deal of uncertainty intrinsic to our theoretical representation of a real system.
Proper handling of such uncertainties, is key to the successful usage of models to predict experimental or field observations. This problem has been addressed over the years by many tools for model calibration an parameter estimation. In this article we present a general framework for uncertainty analysis and parameter estimation which is designed to handle uncertainties associated with the modeling of dynamic biological systems while remaining agnostic as to the type of model used. We apply the framework to two Influenza transmission models: one deterministic and the other stochastic. The results show that the framework can be applied without modifications to the two types of models and that it performs equally well on both. We also discuss the application of the framework to calibrate models for forecasting purposes.
&#xa

    Verification and validation of models

    Get PDF
    Simulation Models;econometrics
    • …
    corecore