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Abstract

In this paper we present a method for testing a system against a non-deterministic
stochastic finite state machine. As usual, we assume that the functional behaviour
of the system under test (SUT) is deterministic but we allow the timing to be non-
deterministic. We extend the state counting method of deriving tests, adapting it to
the presence of temporal requirements represented by means of random variables.
The notion of conformance is introduced using an implementation relation consid-
ering temporal aspects and the limitations imposed by a black-box framework. We
propose an algorithm for generating a test suite that determines the conformance of
a deterministic SUT with respect to a non-deterministic specification. We show how
previous work on testing from stochastic systems can be encoded into the framework
presented in this paper as an instantiation of our parameterized implementation re-
lation. In this setting, we use a notion of conformance up to a given confidence
level.
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1 Introduction

Formal analysis techniques rely on the idea of constructing a formal model that
represents the critical aspects of the system under study. These models allow
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the developer to perform a systematic analysis that would be harder, or ever
impossible, to apply to the system itself. The model can also be used to define
the specification of a system being constructed. In order to use a formal tech-
nique, we need a model of the system under study expressed using a formal lan-
guage. During the last two decades, the original formal languages have become
more expressive. Thus, a new generation of languages have appeared to allow
the explicit representation of non-functional aspects of systems (for example,
the probability of performing a task [12,8,5,28,23,?] or the time consumed by
the system while performing tasks, being either given by fixed amounts of
time [34,27,13] or defined in probabilistic/stochastic terms [18,1,15,22,2]).

One of the advantages of using a formal approach to develop complex systems
is that we can check the system’s correctness with respect to the specification
by comparing its empirical behaviour with that of the model. In this context,
formal testing techniques [21,30,3,?] provide systematic procedures to check
implementations in such a way that the coverage of critical parts/aspects of
the system under test depends less on the intuition of the tester. In particular,
they allow us to test the correctness of a system with respect to a specification.
Formal testing originally targeted the functional behaviour of systems, such
as determining whether the tested system can, on the one hand, perform
certain actions and, on the other hand, does not perform some unexpected
ones. While the relevant aspects of some systems only concern what they
do, in some other systems it is equally relevant how they do what they do.
Thus, after the initial consolidation stage, formal testing techniques started
also to deal with non-functional properties. In particular, the work on formal
testing applied to timed systems has attracted a lot of attention during the
last years. In fact, there are already several proposals for timed testing (e.g.
[25,7,37,36,9,10,20,4,?,?]). In these papers, time is usually considered to be
deterministic, that is, time requirements follow the form “after/before t time
units...”.

A suitable representation of the temporal behaviour is critical for construct-
ing useful models of real-time systems. In this paper we consider an extension
of finite state machines (FSMs), Stochastic Finite Sate Machines (SFSMs),
where (stochastic) time information is included. The duration of the actions
are stochastically defined by means of random variables. That is, instead of
having expressions such as “the action o takes t time units to be performed”
we will have expressions such as “the time taken to perform action o will be
drawn from distribution ξ.” The use of stochastic time introduces several tech-
nical difficulties. For example, since the time that the system takes to perform
an action may vary in different executions, even in the absence of (functional)
non-determinism, the same sequence of actions may take different amounts of
time in different runs of the system. In addition, we have to reformulate the
notion of correctness; when testing from a SFSM we have to take into account
not only the actions that the machine performs but also the temporal require-
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ments. One possibility is to consider equivalence, that is, the system under
test (SUT) is correct if and only if the sets of input/output sequences allowed
by the SUT and the specification are identical and the delay associated with
each sequence that can be performed by the SUT has a random variable with
the same distribution as the corresponding random variable in the specifica-
tion. An alternative notion of correctness, which is more appropriate when
the specification is non-deterministic, relaxes this to allow the input/output
sequences in the SUT to be a subset of those in the specification.

When testing from an FSM it is normal to make certain assumptions and a
checking experiment is a test suite that is guaranteed to determine correct-
ness under these assumptions. These assumptions are phrased in terms of the
SUT behaving like an unknown element of a fault model. Most approaches for
selecting a test suite from a non-deterministic FSM are based on state count-
ing [38,33,32]. This paper considers the case where the specification may be a
non-deterministic SFSM and extends the state counting based test selection
method to the case of SFSMs. This is proven to provide full fault coverage on
implementations whose functional behaviour is deterministic when using the
standard assumption that we have a known upper bound on the number of
states of a minimal SFSM that models the SUT.

Regarding temporal conformance, we have to take into account the fact that,
in a black-box testing framework, we cannot access the random variables of
the SUT. In fact, if we would consider equivalence of random variables, we
would need an infinite number of observations from a random variable of the
implementation (with an unknown distribution) to assure that this random
variable is distributed as another random variable from the specification (with
a known distribution). In addition, there are different notions of a random vari-
able ξ′ in the SUT following a probability distribution function F ′ conforming
to a random variable ξ in the specification following a probability distribution
function F . We give an implementation relation that is parameterized with a
definition ≤ of what it means for a distribution in the SUT to conform to a
distribution in the specification. For example, we may require the distributions
to be equivalent or instead for them to have the same mean and thus allowing
different choices for ≤ effectively makes SFSMs a more expressive formalism.

The main problem with the framework explained so far is that, by keeping
such a high abstraction level, it makes it difficult to realize how the framework
can be useful in black-box testing. In particular, by considering that imple-
mentation relations are parameterized by a certain relation among random
variables, it might seem that we really need to have access to the random
variables, specifically to their distributions, that appear in the implementa-
tion. In this line, the work presented in [29], and its subsequent adaptations to
other frameworks [26,?], presents a more realistic approach. There, the idea is
to check that for all appropriate input/output sequences, the execution time
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values observed while testing the SUT fit the random variables indicated by
the specification. In testing terms we sample from the distribution ξ ′ in the
SUT and use results from statistical sampling theory to compare the set of ob-
servations with ξ. However, the proposal introduced in [29] has a big drawback:
It is not implementable in practice. This is because the test suite produced by
the test derivation algorithm is, in general, infinite. Thus, in practice, we can-
not emit a verdict regarding the correctness of the SUT. However, the ideas
underlying [29] can be used to provide an interesting instantiation of the gen-
eral method introduced in this paper. Essentially, by combining the notions of
sampling and fitting with the adaption of state counting to a stochastic model,
we will be able to define a new framework where we can provide a verdict, up
to a certain confidence level, regarding implementations having a bound on
its number of states.

This paper thus makes the following contributions. First, it defines a parame-
terizable implementation relation that allows us to capture a range of notions
of conformance. Second, it gives an algorithm that, for a standard fault model
and such an implementation relation, produces a test suite that allows us to
determine whether the SUT conforms to the specification up to a required
level of confidence. Finally, it shows that the notion of testing from stochastic
systems presented in [29] can be implemented within the scope of the general
method presented in this paper.

The rest of the paper is organized as follows. In the next section we introduce
basic concepts and the notion of SFSM. In Section 3 we introduce a class of
implementation relations that take into account both functional and timed as-
pects. In Section 4 we review the notions of reaching and distinguishing states
that will be applied in the State Counting method and develop these for SF-
SMs. In Section 5 we establish the relationship between a construct called
the Product Machine and the implementation relation defined in Section 3. In
Section 6 we show how we can generate a finite test suite that can distinguish
faulty implementations. In Section 7 we describe how previous work on test-
ing from SFSMs can be appropriately represented in the general framework
previously introduced. Finally, in Section 8 we present our conclusions and
some lines of future work. In the appendix of the paper we formally define
how hypothesis contrasts can be performed.

2 Preliminaries

In this section we introduce the main basic concepts that we will use in the
paper. Specifically, we will give notation regarding finite automata as well as
the languages recognized by them, we will introduce the notions of random
variable and sample, and we will define the stochastic extension of the finite
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state machine model that we will use in this paper.

2.1 Alphabets and sequences

Throughout this paper, X denotes the set of inputs for the model and Y
denotes the set of possible outputs for the model. Given a set A, A∗ denotes the
set of sequences composed of elements of A, including the empty sequence ε.
In this paper, a variable that represents a sequence will have a bar over it, an
example being x̄.

2.2 Finite Automata

A finite automaton (FA) is defined by a tuple F = (S,A, h, s0, SF ) in which S
is a finite set of states, A is the finite alphabet, h is the state transfer relation
of type S × A ↔ S, s0 ∈ S is the initial state and SF ⊆ S is the set of final
states. If s′ ∈ h(s, a) then (s, a, s′) is a transition and this means that if F
receives a when in state s then it can move to state s′. F is a deterministic
FA (DFA) if for all s ∈ S and a ∈ A there is at most one state s′ ∈ S such
that s′ ∈ h(s, a).

The FA F defines a language L(F ): The set of sequences that can take F from
its initial state to some final state in SF . Thus, we have

L(F ) = {ā ∈ A∗|h(s0, ā) ∩ SF 6= ∅}

Similarly, the state s of F has the corresponding language, defined as the set

Ls(F ) = {ā ∈ A∗|h(s, ā) ∩ SF 6= ∅}

Two FA or states are equivalent if they define the same language. It is known
that every FA is equivalent to a DFA (see, for example, [11]).

2.3 Random variables and samples

We will denote by V the set of random variables. Let ξ be a random variable.
We define its probability distribution function as the function Fξ : IR −→ [0, 1]
such that Fξ(x) = P (ξ ≤ x), where P (ξ ≤ x) is the probability that ξ assumes
values less than or equal to x. In order to avoid side-effects, we will always
assume that all the random variables appearing in the definition of a system are
independent. Let us note that this condition does not restrict the distributions
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to be used. In particular, there can be random variables identically distributed
even though they are independent.

We will use samples to denote any multiset of positive real numbers. We denote
the set of multisets in IR+ by ℘(IR+). Let ξ be a random variable and Smp
be a sample. We denote by γ(ξ, Smp) the confidence of ξ on Smp. In our
framework, samples will be associated with time values that implementations
take to perform actions. We have that γ(ξ, Smp) takes values in the interval
[0, 1]. Intuitively, bigger values of γ(ξ, Smp) indicate that the observed sample
Smp is more likely to be produced by the random variable ξ. That is, this
function decides how similar the probability distribution function generated by
Smp and the one corresponding to the random variable ξ are. In the appendix
of this paper we show how confidence is formally defined.

2.4 Stochastic Finite State Machines

A Stochastic Timed Finite State Machine can be seen as an FSM in which
every transition also has a random variable that represents the expected dis-
tribution of times to execute the transition. Even though we use a slightly
different notation to represent these machines, the underlying model coincides
in fact with the one presented in [29].

Definition 1 A Stochastic (Timed) Finite State Machine (SFSM) M is de-
fined by a tuple (S,X, Y, δ, s0) in which S is a finite set of states, X is the finite
input alphabet, Y is the finite output alphabet, δ is the state transfer relation
of type S×X ↔ Y ×V×S, and s0 ∈ S is the initial state. If (y, ξ, s′) ∈ δ(s, x)
then (s, x, y, ξ, s′) is a transition of M .

Throughout this paper we assume that we are testing against an SFSM M =
(S,X, Y, δ, s0) with n states. A transition (s, x, y, ξ, s′) should be interpreted
in the following way: If M receives input x when in state s then it can take
this transition in which case it outputs y, moves to state s′, and introduces a
delay t given by ξ.

Example 1 Let us consider the machine depicted in Figure 1 in which the
initial state is s1. Each transition has an associated random variable. In the
following we explain how these random variables are distributed. We consider
that ξ1i, for all 1 ≤ i ≤ 4, are uniformly distributed in the interval [0, 5].
Uniform distributions assign equal probability to all the times in the interval.
The random variables ξ2i, for all 1 ≤ i ≤ 3, follow a Dirac distribution in 4.
The idea is that the corresponding delay will be equal to 4 time units. Finally,
the random variables ξ3i, for all 1 ≤ i ≤ 3, are exponentially distributed with
parameter 2. Let us consider the transition (s3, a, 1, ξ12, s4). Intuitively, if the
machine is in state s3 and receives the input a then it will produce the output
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a/1/ξ12

F1(x) =



























0 if x ≤ 0

x
5

if 0 < x < 5

1 if x ≥ 5

F2(x) =











0 if x < 4

1 if x ≥ 4

F3(x) =











1 − e−2·x if x ≥ 0

0 if x < 0

where the random variables ξ11, ξ12, ξ13, ξ14 follow F1, the random variables
ξ21, ξ22, ξ23 follow F2, and the random variables ξ31, ξ32, ξ33 follow F3.

Fig. 1. Example of Stochastic Finite State Machine.

1 after a time given by ξ12. Since ξ12 follows a uniform distribution in the
interval [0, 5], we will have, for example, that this time will be less than 1 time
unit with probability 1

5
, it will be less than 3 time units with probability 3

5
, and

so on. Finally, once 5 time units have passed we know that the transition has
been performed (that is, we have probability 1).

Any SFSM M can be represented by a FA F (M) = (S,A, h, s0, S) in which
A = X × Y × V and s′ ∈ h(s, (x, y, ξ)) if and only if (y, ξ, s′) ∈ δ(s, x). The
SFSM M is said to be deterministic if for all s ∈ S and x ∈ X we have that
|δ(s, x)| ≤ 1. The SFSM M is input-enabled if for all s ∈ S and x ∈ X, δ is
defined on (s, x). In this paper we assume that any SFSM considered is input-
enabled. Let us remark that this is not a real restriction on the expressivity of
the model. In fact, any non input-enabled machine can be easily transformed
into an input-enabled one just by adding a transition (s, x, null, ξ, s) to each
state s that originally did not have a transition labelled by x, where null /∈ Y
is a new output and ξ ∈ V is any random variable. Thus, it is not difficult to
relax the assumption that M is input-enabled: Essentially, in this paper we
use input sequences that distinguish states of the SFSM and care would be
required in defining what it means for an input sequence to distinguish two
states.

We define two functions that are projections of δ. The function δ1 models the
state transfers and thus for all s ∈ S and x ∈ X we have that

δ1(s, x) = {s′ ∈ S|∃y ∈ Y, ξ ∈ V .(y, ξ, s′) ∈ δ(s, x)}

Similarly, δ2 models the outputs and delays and thus for all s ∈ S and x ∈ X
we have that

δ2(s, x) = {(y, ξ)|∃s′ ∈ S.(y, ξ, s′) ∈ δ(s, x)}
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We can extend these to take input sequences using the following recursive
rules in which x ∈ X and x̄ ∈ X∗:

• δ1(s, ε) = {s} • δ1(s, xx̄) = {s′ ∈ S|∃s′′ ∈ δ1(s, x).s′ ∈ δ1(s
′′, x̄)}

• δ2(s, ε) = {ε} • δ2(s, xx̄) = {(y, ξ)δ2(s
′, x̄)|(y, ξ, s′) ∈ δ(s, x)}

Since the specification SFSM can be non-deterministic, δ1 and δ2 can return
sets that contain more than one element.

If we apply an input x when in state s of M and execute a transition that has
output y then we use δy(s, x) to denote the set of possible next states. Thus,
we have

δy(s, x) = {s′ ∈ S|∃ξ ∈ V .(y, ξ, s′) ∈ δ(s, x)}

Naturally we can extend these definitions in a similar manner to δ1 and δ2.
Thus, for x ∈ X, x̄ ∈ X∗, ȳ ∈ Y ∗, y ∈ Y we have

• δε(s, ε) = s • δyȳ(s, xx̄) = δȳ(δy(s, x), x̄)

If x̄ = x1x2 . . . xk and ȳ = y1y2 . . . yk, with xi ∈ X and yj ∈ Y , and δȳ(s0, x̄) is
defined then we say that M can perform the sequence x1/y1, x2/y2, . . . , xk/yk

and we say that this sequence is an evolution of M . We denote by NTEvol(M)
the set containing all the evolutions of M .

We can define another function, also taking as basis the different δ functions,
to compute the random variable that we can obtain after performing a non-
empty sequence. Formally,

• δVy (s, x) = ξ, if ∃s′ ∈ S.δ(s, x) = (y, ξ, s′) • δVyȳ(s, xx̄) = δVȳ (δy(s, x), x̄)

Let us remark that this function will be undefined if either the sequences
have different lengths or one of the transitions cannot be performed. If x̄ =
x1x2 . . . xk, ȳ = y1y2 . . . yk, and ē = x1/y1, x2/y2, . . . , xk/yk then we will con-
sider that δV(s, ē) denotes δVȳ (s, x̄).

If for all s ∈ S, x ∈ X and y ∈ Y there do not exist ξ1 6= ξ2 such that
(y, ξ1) ∈ δ2(s, x) and (y, ξ2) ∈ δ2(s, x) then M is said to be observable. Let us
note that observable machines allow non-determinism. For example, we can
have a SFSM with two transitions such as (s, x, y, ξ, s1) and (s, x, y′, ξ′, s′1)
as long as y 6= y′. It is worth noticing that whereas an un-timed finite state
machine is observable if and only if the associated FA is deterministic, in the
case of SFSMs we only can claim that if an SFSM M is observable then F (M)
is deterministic. For example, we can consider a deterministic FA F (M) that
represents a SFSM M . F (M) may contain the transitions (s, (x, ξ1, y), s1) and
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(s, (x, ξ2, y), s2) which fulfill the deterministic condition of the FA but M is
not observable. We only consider observable SFSMs in this paper. Thus, if
δy(s, x) = {s′} then we write δy(s, x) = s′.

3 Conformance and Fault Models

In order to reason about test effectiveness it is normal to introduce a fault
model that contains a set of models with the property that it is believed
that the SUT is equivalent to some (unknown) element of this set. The fault
model used in this paper is defined in Section 3.1. In order to test against a
specification M it is necessary to say what it means for the SUT to conform
to M . The notion of conformance used is represented by an implementation
relation. In Section 3.2 we describe the implementation relation used in this
paper.

3.1 Fault models for SFSMs

A fault model Φ is a set of models with the property that the tester believes
that the SUT is equivalent to an unknown element of Φ [19]. It is normal to
describe the elements of the fault model using the formal language used to
define the specification and thus the fault model will contain SFSMs. It is
also usual to assume that we know the set of possible inputs and outputs of
the SUT and in order to simplify the exposition we assume that these are the
sets X and Y respectively. If we believe that the SUT could produce certain
outputs that M cannot then we can extend Y . The implementation relation
used in this paper ensures that we do not have to consider input values that
are not in X. As usual in conformance testing, we assume that there is a given
integer m such that it is known that the SUT has no more than m states (see,
for example, [6,32]). These assumptions lead to the following fault model.

Definition 2 Let M = (S,X, Y, δ, s0) be a SFSM. The fault model Φm
M con-

tains the set of deterministic input-enabled SFSMs that have input alphabet
X, output alphabet Y , and at most m states.

We thus assume that the SUT can be modelled by an unknown deterministic
SFSM MI = (U,X, Y, δI , u0) that has at most m states. Let us recall that
the condition that MI is deterministic requires that the state transitions are
deterministic but does not force the time delay for a transition to be a constant.
It thus requires the functional behaviour of MI to be deterministic but allows
stochastic temporal behaviour.
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3.2 The implementation relation

Given the fact that the delay in a transition t of M is represented by a random
variable ξ, it seems that a natural notion of conformance is to require the
corresponding transition of the SUT to also have a delay represented by ξ. We
then have the following definition of conformance.

Definition 3 Let M be an SFSM and MI ∈ Φm
M . We say that MI conforms

to M , denoted by MI conf M , if L(F (MI)) ⊆ L(F (M)).

Note that Definition 3 requires the transitions in the SUT to have identical
distributions to the corresponding transitions in the specification.

In general, we cannot determine the random variable ξ ′ associated with a
transition in the SUT through testing. However, we can assume that there is
such a distribution ξ′ in the SUT and thus that either the SUT MI conforms
to M or it does not. The problem then is to try to decide whether MI conforms
to M in black-box testing, where all we can do is to record the delays that the
implementation needs to perform the transition and estimate ξ ′ on the basis
of this. The approach described in this paper involves multiple executions of a
transition, each execution leading to a time being recorded. The resultant set
of times can then be compared with the expected distribution ξ using results
from statistics. In this paper we use hypothesis contrasts, as presented in the
Appendix, to decide up to a certain degree of confidence whether the observed
times could be produced by the distribution governing the behavior of ξ. In
testing we will therefore check that the distribution in the SUT conforms to
the distribution in the specification up to a given confidence level, the tester
choosing the required confidence level based on factors such as risk.

We have observed that Definition 3 requires the execution times of the tran-
sitions in the SUT to have the same distributions as the corresponding tran-
sitions in the specification. However, we can use weaker notions since timing
requirements can be looser than this. For example, we might require that a
random variable ξ′ in the SUT has the same mean as the corresponding ran-
dom variable ξ in the specification but to not insist that ξ ′ and ξ have the
same distribution. As a consequence we might use a weaker notion of a ran-
dom variable ξ′ in MI conforming to a random variable ξ in M and in order
to make the results in this paper more widely applicable we simply denote
this ξ′ ≤ ξ. Thus, the use of the ≤ relation between random variables does
in fact constitute a general framework that can be instantiated, by giving a
specific definition of ≤, when needed. We can now parameterize our definition
of conformance with ≤.

Definition 4 Let M be a SFSM and MI ∈ Φm
M . We say MI ≤-conforms to

M , denoted by MI conf≤ M , if for all sequence (x1, y1, ξ
′
1) . . . (xk, yk, ξ

′
k) ∈
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L(F (MI)) there exists a sequence (x1, y1, ξ1) . . . (xk, yk, ξk) ∈ L(F (M)) such
that for all 1 ≤ i ≤ k we have ξ ′k ≤ ξk.

We say that a state u of SFSM MI ≤-conforms to a state s of SFSM M if
for all sequence (x1, y1, ξ

′
1) . . . (xk, yk, ξ

′
k) ∈ Lu(F (MI)) there exists a sequence

(x1, y1, ξ1) . . . (xk, yk, ξk) ∈ Ls(F (M)) such that for all 1 ≤ i ≤ k we have
ξ′k ≤ ξk.

This new notion of conformance makes SFSMs more expressive since, by choos-
ing an appropriate instance of this conformance relation, we can express prop-
erties such as “the mean transition execution time should be 1 second” while
if we restrict ourselves to the conformance relation traditionally used with
SFSMs then we cannot express such requirements.

We can also say what it means for a sequence in (Y × V)∗ to ≤-conform to
another sequence in (Y × V)∗.

Definition 5 Let z̄ = (y1, ξ1) . . . (yk, ξk) and z̄′ = (y′
1, ξ

′
1) . . . (y′

k, ξ
′
k) be se-

quences in (Y × V)∗. We say that z̄′ ≤-conforms to z̄ if for all 1 ≤ i ≤ k we
have that yi = y′

i and ξ′i ≤ ξi. This is denoted z̄′ conf≤ z̄.

4 Reaching and distinguishing states

This section discusses how we can produce input sequences to reach and dis-
tinguish states; these sequences will be used in the test generation algorithm
given in Section 6. When testing from a deterministic FSM, it is normal to
test a transition t by applying an input sequence that reaches the starting
state of t, then the input from t and finally input sequences that distinguish
between the ending state of t and all other states of the FSM (see, for exam-
ple, [6,14,17,35]). However, for non-deterministic FSMs there need not exist
an input sequence that is guaranteed to reach a particular state s. Further,
there may be no input sequence that is guaranteed to distinguish between
non-equivalent states s and s′, since we may have that every input/output
sequence that is possible from one of these states is also possible from the
other state despite these states not being equivalent. Similar issues arise when
testing from SFSMs, but are complicated by the presence of random variables
governing the timed behaviour of transitions.

If there is an input sequence that is guaranteed to take SFSM M from s0 to
state s then s is said to be deterministically-reachable. This sequence allows
us to reach a state of the SUT that should conform to the state s of M . Due
to non-determinism in the specification there may be a state s of M such that
there is no input sequence that is guaranteed to take M from s0 to s. Other
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sequences allow us to distinguish between states of M . For example, the input
sequence x̄ allows us to distinguish between s and s′ if no output sequence that
can be produced by applying x̄ in state s can also be produced by applying
x̄ in state s′. We can extend this to using sets of input sequences or adaptive
test cases, leading to a more general concept, r-distinguishable states. Next,
we formally define both of these concepts in the context of SFSMs.

Definition 6 Let M = (S,X, Y, δ, s0) be a SFSM and s ∈ S. We say that s is
deterministically-reachable ( d-reachable) if there is an input sequence x̄s such
that δ1(s0, x̄s) = {s} and then x̄s is said to deterministically-reach ( d-reach) s.

Example 2 The state s4 in the machine represented in Figure 1 is d-reached
by b while the state s3 is d-reached by ba. On the contrary, the state s2 is not
d-reachable.

It is also useful to be able to reason about the state of the SUT reached by
a given sequence. It transpires that this is assisted by using input sequences
that distinguish between states of M in a manner that guarantees that they
distinguish between the corresponding states of the SFSM MI that models
the SUT if no failure is observed in testing. In order to distinguish between
two states it is first worth considering how we can distinguish between two
transitions t1 = (s1, x, y1, ξ1, s

′
1) and t2 = (s2, x, y2, ξ2, s

′
2) of SFSM M .

Definition 7 Let M = (S,X, Y, δ, s0) be a SFSM. Transitions t1 = (s1, x, y1, ξ1, s
′
1)

and t2 = (s2, x, y2, ξ2, s
′
2) of M are distinguishable if either of the following

hold:

• they produce a different output and so y1 6= y2; or
• we can distinguish between ξ1 and ξ2 through it not being possible for a

random variable ξ′ ∈ V to conform to both ξ1 and ξ2, that is, for all ξ′ ∈ V
we have that ¬(ξ′ ≤ ξ1 ∧ ξ′ ≤ ξ2).

In this case we also say that (y1, ξ1) and (y2, ξ2) are distinguishable and oth-
erwise they are compatible. Similarly, if t1 and t2 are not distinguishable then
we say that they are compatible.

Two sequences t1 . . . tk and t′1 . . . t′k of transitions are compatible if for all 1 ≤
i ≤ k we have that ti and t′i are compatible. Similarly, sequences (y1, ξ1) . . . (yk, ξk)
and (y′

1, ξ
′
1) . . . (y′

k, ξ
′
k) are compatible if for all 1 ≤ i ≤ k we have that (yi, ξi)

and (y′
i, ξ

′
i) are compatible.

We can now define what it means for an input sequence x̄ ∈ X∗ to distinguish
between states s and s′ of M and a natural way of doing this is to insist
that we have no compatible sequences of transitions from s and s′ with x̄.
This can be generalized by applying a similar approach as with un-timed
finite state machines, inductively defining a set of input sequences (see, for
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Adaptive test σ1 a

a
0

0 1

1

Adaptive test σ2 b
0

a
1

0 1

Fig. 2. Examples of Adaptive Tests.

example, [32]). An alternative is to use a set of finite adaptive test cases [16],
where an adaptive test case σ is either the adaptive test case null, that involves
no testing, or a pair (x, f) in which x is the next input to apply and f is a
mapping from outputs to adaptive test cases. In the use of σ = (x, f), first x is
applied to the SUT, the resultant output y is observed and then the adaptive
test case f(y) is applied. Adaptive test cases thus correspond to finite decision
trees. For example, the first tree in Figure 2 shows an adaptive test case in
which the first input applied is a, represented by the contents of the ‘top’
node. If output 1 is observed in response to testing then the adaptive test
case has ended, as represented by the arc with label 1 to an empty node. If
instead 0 is observed then we next apply a and then the adaptive test case
stops irrespective of the next output observed.

For a given input set X and output set Y , the set T (X,Y ) of finite adaptive
test cases can be recursively defined in the following way (see, for example
[16]).

Definition 8 Each element of T (X,Y ) is either null or a pair (x, f) in which
x ∈ X and f is a mapping from Y to T (X,Y ).

In some situations it will be useful to define an adaptive test as a sequence
of inputs followed by an adaptive test. The idea is that we do not explicitly
consider the outputs that we receive while applying the initial input sequence
because they do not influence our choices regarding future input. For example,
if we have a state s being d−reached by an input sequence x̄ and we are testing
a transition from this state, we can apply first this sequence of inputs and then
start the proper testing of the transition. In particular, we will use this notion
in Section 6 when we produce test suites.

Definition 9 Let σ ∈ T (X,Y ) be an adaptive test case and x̄ be a sequence
of inputs. We recursively define the adaptive test case x̄σ as:

x̄σ =











σ if x̄ = ε

(x1, f) if x̄ = x1x1 ∧ ∀y ∈ Y : f(y) = x1σ

If A is a set of input sequences and T is a set of adaptive test cases then we
let AT denote the set of adaptive test cases formed by composing each input
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sequence in A with each adaptive test case from T .

We can define what it means for an adaptive test case to r-distinguish two
states. While from this it is straightforward to also produce a set of input
sequences that r-distinguishes two states, in this paper we use adaptive test
cases since they can lead to fewer sequences being applied in testing.

Definition 10 Let M = (S,X, Y, δ, s0) be a SFSM. We say that states s1 and
s2 of M are r(1)-distinguished by the adaptive test case (x, f) if for every
transition t1 with start state s1 and input x and every transition t2 with start
state s2 and input x we have that t1 and t2 are distinguishable. We say that
states s1 and s2 are r(k)-distinguished by the adaptive test case σ = (x, f)
(k > 1) if either:

• there exists 1 ≤ j < k such that s1 and s2 are r(j)-distinguished by σ; or
• for all (y1, ξ1, s

′
1) ∈ δ(s1, x) and (y2, ξ2, s

′
2) ∈ δ(s2, x) we have that either

(y1, ξ1) and (y2, ξ2) are distinguishable or there exists 1 ≤ j < k such that
the states s′1 and s′2 are r(j)-distinguished by f(y1) (y1 = y2).

States s1 and s2 are r(k)-distinguishable if there exists an adaptive test case
that r(k)-distinguishes them. States s1 and s2 are r-distinguishable if there
exists k ≥ 1 such that s1 and s2 are r(k)-distinguishable.

Throughout this paper W denotes a set of adaptive test cases that r-distinguishes
all r-distinguishable pairs of states of M . If no two states of M are r-distinguishable
then W = {null}.

Example 3 Let us consider the FSM presented in Figure 1 and the adap-
tive test cases σ1 and σ2 given in Figure 2. The states s1 and s2 are not
r-distinguishable since input a can take both states to s2 with output 0 and
two delays identically distributed (that is, ξ31 and ξ32) while input b can take
both states to s4 with output 1 and two delays identically distributed (that is,
ξ22 and ξ23). Adaptive test case σ1 r-distinguishes s4 from all of the other states
and r-distinguishes s2 and s3. Further, σ2 r-distinguishes s1 from s3 and s4

and so W = {σ1, σ2} r-distinguishes all r-distinguishable states of the SFSM.

5 Test effectiveness and the Product Machine

A number of methods for generating test suites from (un-timed) non-deterministic
finite state machines have been based on the notion of a Product Machine (see,
for example, [32,16,31]). In this section we extend the concept of a Product
Machine to the situation in which we have stochastic delays.

The Product Machine can be thought of as the specification M and the (un-
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known) model MI of the SUT running in parallel. Let us consider a state
(s, u) of the Product Machine and a transition (u, x, y, ξ ′, u′) of MI . If M has
a transition of the form (s, x, y, ξ, s′) where ξ′ ≤ ξ then the Product Machine
contains the transition ((s, u), x, y, ξ ′, (s′, u′)); otherwise the Product Machine
contains the transition ((s, u), x, y, ξ ′, Fail) for a special state Fail. The state
Fail thus represents the possibility of taking a transition in the SUT MI for
which there currently is no compatible transition in the specification M . Since
MI is unknown, the Product Machine is also unknown, however, it can be
used in reasoning about test effectiveness.

Definition 11 Let M = (S,X, Y, δ, s0) and MI = (U,X, Y, δI , u0) be SFSMs.
The Product Machine of M and MI is the SFSM P (M,MI) = (P,X, Y, δP , p0)
in which p0 = (s0, u0), P = (S ×U)∪ {Fail}, where Fail 6∈ S ×U , and δP is
defined by the following:

(1) If (y, ξ′, u′) ∈ δI(u, x) and there exists a state s′ ∈ S and ξ such that
(y, ξ, s′) ∈ δ(s, x) and ξ′ ≤ ξ then (y, ξ′, (s′, u′)) ∈ δP ((s, u), x).

(2) If (y, ξ′, u′) ∈ δI(u, x) and there does not exist a state s′ ∈ S and ξ such
that (y, ξ, s′) ∈ δ(s, x) and ξ′ ≤ ξ then (y, ξ′, Fail) ∈ δP ((s, u), x).

Note that the Product Machine need not be input-enabled since, in particular,
no transitions are defined from the state Fail. An immediate consequence of
the definition is that since MI is deterministic, and so δI is a function, and M
is observable the Product Machine is also deterministic.

Lemma 1 Given SFSMs M = (S,X, Y, δ, s0) and MI = (U,X, Y, δI , u0), if
M is observable and δI is a function then δP is a function.

Proof : Let us suppose that (s, u) is a state of the Product Machine and that
(y, ξ′, (s′, u′)) ∈ δP ((s, u), x) for some x ∈ X. It is sufficient to prove that
δP ((s, u), x) contains no other elements. By definition, since δI is a function
the state Fail is not reachable from (s, u) using input x. Next we proceed with
the proof by contradiction: Let us suppose that (y1, ξ

′
1, (s

′
1, u

′
1)) ∈ δP ((s, u), x)

for some (y1, ξ
′
1, (s

′
1, u

′
1)) 6= (y, ξ′, (s′, u′)). First, since δI is a function we have

that y1 = y, ξ′1 = ξ′, and u′
1 = u′. Second, since M is observable and y = y1

we must have that s′1 = s′. This provides a contradiction as required. ut

Next we prove the announced result, that is, the SUT conforms to M if and
only if the state Fail of the Product Machine is not reachable.

Theorem 1 Let M = (S,X, Y, δ, s0) be an observable and input-enabled SFSM
and MI = (U,X, Y, δI , u0) be in Φm

M . MI conf≤ M if and only if the state Fail
of P (M,MI) is unreachable.

Proof : First let us assume that the state Fail of the Product Machine is
reachable. We will use proof by contraction. Thus, let us suppose that MI
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does ≤-conform to M . Let x̄ denote a minimum length input sequence that
can take P (M,MI) from p0 to the state Fail and let x̄ = x̄1x for x ∈ X,
x̄1 ∈ X∗. Thus x̄1 reaches a state (s, u) of the Product Machine such that
there exist y ∈ Y and ξ′ ∈ V such that (y, ξ′) = δI

2(u, x) and there is no
(y, ξ) ∈ δ2(s, x) such that ξ′ ≤ ξ. Let z̄′ = δI

2(u0, x̄1) and let z̄ denote the
unique element of δ2(s0, x̄1) such that z̄′ conf≤ z̄: uniqueness is ensured since
M is observable. By the uniqueness of z̄, since MI conf≤ M and so z̄′(y, ξ′)
≤-conforms to an element of δ2(s0, x̄), δ2(s0, x̄) must contain a sequence in the
form z̄(y, ξ) for some ξ such that ξ ′ ≤ ξ. Since M is observable, δz̄(s0, x̄1) = s
and so (y, ξ) ∈ δ2(s, x) for some ξ with ξ ′ ≤ ξ. This provides a contradiction
as required.

Now let us assume that the state Fail of M is unreachable. Again, we will
perform the proof by contraction by supposing that MI does not ≤-conform
to M . Let x̄ denote a minimum length input sequence such that δI

2(u0, x̄) does
not ≤-conform to any element of δ2(s0, x̄) and let x̄ = x̄1x, for x ∈ X and
x̄1 ∈ X∗. Let us also consider z̄′ = δI

2(u0, x̄1). By the minimality of x̄, there
is some z̄ ∈ δ2(s0, x̄1) such that z̄′ ≤ z̄ and so δP

1 (p0, x̄1) = (s, u) for some
(s, u) ∈ S × U . Thus, since δI

2(u0, x̄) does not ≤-conform to any element of
δ2(s0, x̄) we have that δI

2(u, x) does not ≤-conform to any element of δ2(s, x).
By the definition of δP , Fail = δP

1 ((s, u), x) and so, since (s, u) is reachable,
the state Fail is reachable. This provides a contradiction as required. ut

Testing can thus be seen as a process of executing the SUT in order to deter-
mine whether the state Fail of the unknown Product Machine is reachable.
In Section 6 we show how state counting can be adapted in order to produce
a test suite T with the property that the state Fail of the Product Machine
is reachable if and only if it is reached by some element of T . This allows us
to test in order to determine whether the SUT conforms to M with a given
confidence.

The following result says that an input sequence x̄ reaches the state Fail of
the Product Machine if and only if it triggers a sequence of transitions in the
SUT with a label z̄′ such that there is no corresponding sequence of transitions
in M : If we observe z̄′ in testing then we have observed a failure.

Proposition 1 Let M = (S,X, Y, δ, s0) and M = (U,X, Y, δI , u0) be in Φm
M .

If an input sequence x̄ reaches state Fail of the Product Machine P (M,MI)
then it triggers a sequence of transitions in MI with a label z̄′ such that there
is no sequence z̄ ∈ L(F (M)) such that z̄ ′ conf≤ z̄.

Proof : Proof by induction on the length of x̄. Since Fail is not reachable
by the empty sequence, the result holds for the base case ε. The inductive
hypothesis is that the result holds for all input sequences of length less than
k and let x̄ be an input sequence of length k that reaches the state Fail. Let
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x̄ = x̄1x for x ∈ X. If x̄1 reaches the state Fail then the result follows from
the inductive hypothesis. We therefore assume that x̄1 reaches a state (s, u)
of the Product Machine.

Let z̄′
1 = δI

2(u0, x̄1) and let z̄1 be the unique element of δ2(s0, x̄1) such that
z̄′1 conf≤ z̄1. There exists y ∈ Y and ξ′ ∈ V such that (y, ξ′) = δI

2(u, x) and so
z̄′1(y, ξ′) = δI

2(u0, x̄).

Since x̄ reaches the state Fail, there is no (y, ξ) ∈ δ2(s, x) such that ξ′ ≤ ξ.
Thus, by the uniqueness of z̄1, there does not exist z̄ ∈ L(F (M)) such that
z̄′ conf≤ z̄ as required. ut

The following result shows how we can use a set W of adaptive test cases, as
described in Section 4, in order to explore certain aspects of the structure of
the SUT.

Proposition 2 Let M = (S,X, Y, δ, s0) and M = (U,X, Y, δI , u0) be in Φm
M .

Let us suppose that x̄1 and x̄2 reach states (s1, u1) and (s2, u2) respectively
of the Product Machine P (M,MI). If the adaptive test case σ = (x, f) r-
distinguishes s1 and s2 and both x̄1σ and x̄2σ do not reach the state Fail of
the Product Machine then u1 6= u2.

Proof : By definition, the result holds if and only if it holds for adaptive test
cases that r(k)-distinguish states, for all k ≥ 1. The proof will proceed by
induction on k. The base case, with k = 1, holds immediately.

Let us consider the inductive hypothesis that the result holds for all k <
l, for some l > 1. It is sufficient to prove that it holds for k = l and we
therefore assume that σ r(l)-distinguishes s1 and s2. If s1 and s2 are r(j)-
distinguishable, for some j < l, then the result follows immediately from the
inductive hypothesis. If δI

2(u1, x) 6= δI
2(u2, x) then the result holds so we assume

that δI
2(u1, x) = δI

2(u2, x) = (y, ξ′) for some y and ξ′. Let u′
i = δI

1(u0, x̄ix) =
δI
1(ui, x) (1 ≤ i ≤ 2). Since the state Fail is neither reached by x̄1σ nor

by x̄2σ, and s1 and s2 are not r(1)-distinguishable, there exist some ξ and
s′1, s

′
2 ∈ S such that (y, ξ, s′i) = δ(si, x) and ξ′ ≤ ξ (i ∈ {1, 2}). Thus, we

conclude δP ((si, ui), x) = (y, ξ′, (s′i, u
′
i)), for i ∈ {1, 2}. By definition, since σ

r(l)-distinguishes s1 and s2, there exists 1 ≤ j < l such that the states s′1 and
s′2 are r(j)-distinguished by f(y) and so, from the inductive hypothesis, we
derive that u′

1 6= u′
2. The result thus follows from MI being deterministic. ut
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6 Test suite generation

We have seen that testing can be represented as a process of trying to deter-
mine whether the state Fail of the (unknown) Product Machine is reachable.
In this section we assume that we are testing against an SFSM M with m
states using the fault model Φm

M . Thus the Product Machine has at most
mn + 1 states and so the state Fail of the Product Machine is reachable if
and only if it can be reached using an input sequence of length at most mn.
We could thus use the test suite Xmn formed by applying Definition 9 to the
composition of the input sequences of length mn and the adaptive test null.
This section shows how we can use a smaller test suite if there are states that
are d-reachable and/or states that are r-distinguishable.

The test suite will be developed using a breadth-first search starting from the
d-reachable states of M . We need a termination criterion for this search and
the criterion is based on the idea of searching for a minimal sequence that
reaches Fail. Let us consider a d-reachable state s of M and a sequence x̄s

used to d-reach s. The termination criterion is satisfied by an input sequence
x̄ following x̄s if we can show that x̄ cannot be a prefix of a minimum length
input sequence that reaches the state Fail when followed by an element of
W . The reasoning used to achieve this is based on an approach called state
counting. We place a lower bound on the number of states that MI must have
if the input sequence, followed by any element of W , does not reach Fail and
no state of the Product Machine has been repeated (and so the input sequence
can be the prefix of a minimal sequence that, when followed by an element of
W , reaches Fail). We stop when this exceeds the upper bound on the number
of states of MI . We now introduce notation that will be used in state counting.

Let Ŝ denote the set of d-reachable states of M . Further, for each s ∈ Ŝ we
let x̄s denote an input sequence that d-reaches s and we fix x̄s0

= ε. For each
state s ∈ Ŝ let z̄′

s denote the sequence (x1, y1, ξ
′
1) . . . (xk, yk, ξ

′
k) in L(F (MI))

where x̄s = x1 . . . xk. We let V = {x̄s|s ∈ Ŝ} be the set of x̄s for s ∈ Ŝ; this set
contains exactly one input sequence for each d-reachable state of M including
the empty sequence ε. Given a set S ′ ⊆ S of states, Ŝ ′ = S ′ ∩ Ŝ denotes the
d-reachable states belonging to S ′.

We assume that W is the set of adaptive test cases used to pairwise distinguish
states of M . We let S1, . . . , Sk denote the maximal sets of states that are pair-
wise distinguished by W . We can now adapt the notion of state counting [32].

Let us recall that given SFSM M , F (M) is the corresponding FA and for a
state s of M , Ls(F (M)) denotes the language of sequences from X × Y × V
defined by the paths in M from s. Given z̄ = (x1, y1, ξ1) . . . (xr, yr, ξr) ∈
Ls(F (M)) we say that z̄ visits the states δy1

(s, x1), δy1y2
(s, x1x2), . . . , δy1...yr

(s, x1 . . . xr).
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Given a d-reachable state s ∈ Ŝ, a set Tr(s) (called a traversal set in [32]) can
be defined:

• On the basis of the successor tree, generate the set Fs ⊆ Ls(F (M)) of
sequences from (X×Y ×V)∗ defined by: Fs is the set of z̄ ∈ Ls(F (M)) such
that there exists 1 ≤ i ≤ k where z̄ visits states from Si exactly m−|Ŝi|+1
times from s and this condition does not hold for any proper prefix of z̄.

• Tr(s) is the set of input sequences such that there is some correspond-
ing sequence in Fs: Tr(s) = {x1 . . . xr ∈ X∗|∃y1, . . . , yr ∈ Y, ξ1, . . . , ξr ∈
V .(x1, y1, ξ1) . . . (xr, yr, ξr) ∈ Fs}.

The test suite is formed in the following way: For each s ∈ Ŝ and sequence
x̄ ∈ Tr(s) we include each element of {x̄s}pre(x̄)W where pre(x̄) is the set
of prefixes of x̄, including the empty sequence ε. Given state s ∈ Ŝ we let
T (s) = {x̄s} ∪x̄∈Tr(s) pre(x̄). Then we get the following test suite:

T =
⋃

s∈Ŝ

T (s)W

Lemma 2 Let M = (S,X, Y, δ, s0) be an observable input-enabled SFSM,
MI = (U,X, Y, δI , u0) be in Φm

M . If no adaptive test case in T reaches the
state Fail of the Product Machine P (M,MI) then the state Fail of P (M,MI)
is not reachable.

Proof : We will prove the result by contradiction. Thus, let us suppose that
no adaptive test case in T reaches the state Fail of the Product Machine
P (M,MI) but that the state Fail of P (M,MI) is reachable. Let us consider
s ∈ Ŝ and x̄ ∈ X∗ such that Fail = δP

1 ((s0, u0), x̄sx̄) and x̄ is minimal. In
this situation there does not exist s′ ∈ Ŝ and x̄′ ∈ X∗ such that Fail =
δP
1 ((s0, u0), x̄s′ x̄

′) and x̄′ is shorter than x̄. Since ε ∈ V there exists some such
s and x̄. Let x̄ = x1 . . . xl and let z̄′ = z′

1 . . . z′
l = δI

2(δ
I
1(u0, x̄s), x̄).

Since no adaptive test case in T reaches the state Fail of the Product Machine
P (M,MI), we must have that there is no x̄1 ∈ Tr(s) such that x̄ ∈ pre(x̄1). Let
x̄1 = x1 . . . xk′ denote the longest prefix of x̄ in Tr(s) and let z̄ ′

1 = z′
1 . . . z′

k′

denote the corresponding prefix of z̄′. By the definition of Tr(s), there ex-
ists z̄1 = z1 . . . zk′ ∈ (Y × V)∗, with zi = (yi, ξi), such that z̄′

1 conf≤ z̄1,
(x1, y1, ξ1) . . . (xk′ , yk′ , ξk′) is contained in Fs and the inclusion of this in Fs is
based on some set Sr.

For each si ∈ Sr let ni = {x̄sx1 . . . xj|1 ≤ j ≤ k′ ∧ si = δy1...yj
(s, x1 . . . xj)} be

the non-empty prefixes of x̄1 that visit si from state s in M . By the minimality
of x̄ no state of the Product Machine is repeated and so the states of MI

reached by sequences in ni must be distinct. Further, if si ∈ Ŝr then the state
of MI reached by x̄si

must not be reached by a sequence contained in ni. Let
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n′
i be defined by: If si ∈ Ŝr then n′

i = ni ∪ {x̄si
}; otherwise n′

i = ni. Then the
states of MI reached by sequences in n′

i must be distinct.

Further, since W pairwise distinguishes the states in Sr, by Proposition 2,
for all x̄i ∈ n′

i and x̄j ∈ n′
j, for states si, sj ∈ Sr with si 6= sj, we have

that δI(u0, x̄i) 6= δI(u0, x̄j). Thus, MI must have at least
∑

si∈Sr
|n′

i| states.

Therefore, by the definition of Fs, MI must have at least m−|Ŝr|+1+ |Ŝr| =
m + 1 states. Since MI has at most m states, this provides a contradiction as
required. ut

Theorem 2 If M is an observable input-enabled SFSM and MI ∈ Φm
M then

we have that no sequence in T reaches the state Fail of the Product Machine
P (M,MI) if and only if MI conf≤ M .

Proof : First observe that by Lemma 2, no sequence in T reaches the state Fail
of the Product Machine P (M,MI) if and only if the state Fail of P (M,MI)
is not reachable. The result thus follows from Theorem 1. ut

Example 4 Let us consider the machine depicted in Figure 1. Previously we
showed that all the states except s2 are d-reachable. We choose a deterministic
state cover V = {ε, b, ba}. The states s1 and s2 are not r-distinguishable and
the set of adaptive tests W = {σ1, σ2} r-distinguishes the rest of states. We
have two maximal sets of pairwise r-distinguishable states S1 = {s1, s3, s4}
and S2 = {s2, s3, s4}. The states in S1 are d-reachable therefore |Ŝ1| = 3.
Nevertheless the state s2 in S2 is not d-reachable and so |Ŝ2| = 2.

We assume that the implementations has no more than 4 states (m = n = 4).
The termination criterion for expanding the input sequences is reached if either
states of Ŝ1 are visited twice (m − |Ŝ1| + 1) or states of Ŝ2 are reached three
times (m − |Ŝ2| + 1) during the derivation of the sequence from each of the
d-reachable states.

Figure 3 represents the successor tree corresponding to the d-reachable state
s4. All the paths to the leaves contain two nodes that represent states of S1

except one of them that transverses three times the state s2 of the set S2. This
tree leads to the transversal set

Tr(s4) = {ε, a, b, aa, ab, ba, bb, baa, bab, baaa, baab}

and culminates in
T (s4) = {b}Tr(s4)W

We can therefore find a finite set T of input sequences such that the SUT
conforms to M if and only if no input sequence in T reaches the state Fail of
the Product Machine. By Proposition 1, if an input sequence x̄ reaches state
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s4
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s4

a/1/ξ33, b/1/ξ23

Fig. 3. Tree representing Fs4
.

Fail of the Product Machine then it triggers a sequence of transitions in the
SUT with a label z̄′ such that there is no sequence z̄ ∈ L(F (M)) such that
z̄′ conf ≤z̄. We therefore have to test to check this property for every x̄ ∈ T
and in the following section we explain how hypothesis contrasts can be used.
The most important benefit of the result in Theorem 2 is that the definition
of conformance is in terms of an infinite set of input sequences and we have
shown that it is sufficient to consider a finite set T .

7 Implementing other notions of conformance

In this section we show how the testing framework presented in [29] can be ad-
equately encoded into the framework described in this paper. However, these
two approaches are not exactly the same and we have to deal with the dif-
ferences in order to make a proper adaption. There are two main differences
between them, in both cases, related to conformance regarding stochastic time.
On the one hand, while conformance is established in [29] by considering the
random variable obtained by adding all the random variables taking part in
a sequence, in this paper we consider random variables for each transition
of the sequence. On the other hand, the main notion of conformance given
in [29] does not really compare random variables of the specification and the
implementation, but it compares random variables of the specification with
observed time values from testing the implementation.

We will do the encoding in two steps. First, we will consider an approximation
that deals only with the first of the differences and then we will show how the
previous study can be modified to take into account the second difference.
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T1

a

ξ31

pass

0

ξ33

pass

1

T2

a

ξ31

0

a

ξ32

pass

0

fail

1

ξ33

1

T3

b

fail

0

ξ23

pass

1

T4

b

fail

0

ξ23

1

a

ξ13

pass

0

fail

1

Fig. 4. Examples of Tests: X = {a, b} and Y = {0, 1}.

7.1 A new notion of test

There are two main differences between tests as introduced in [29] and adaptive
test cases as considered in this paper. First, in [29], after applying an input,
the testing process can continue only after the reception of one specific output
while in the current framework adaptive test cases can continue after one of
several outputs. Second, in [29], once the testing process finishes we can return
two verdicts, pass and fail, while adaptive test cases do not explicitly return
a verdict. A schematic representation of tests can be seen in Figure 4. In
addition, we have to modify the notion of test given in [29] to deal with the
framework developed in this paper. Specifically, time will be observed not only
when the testing process successfully finishes but also in all the intermediate
phases.

Definition 12 A test is a tuple T = (S,X, Y, δ, sin, SI , SO, SF , SP , CT ) where
S is the set of states, X and Y are disjoint sets of input and output actions,
respectively, δ ⊆ S×(X∪Y )×S is the transition relation, sin ∈ S is the initial
state, and the sets SI , SO, SF , SP ⊆ S are a partition of S. The transition
relation and the sets of states fulfill the following conditions:

• SI is the set of input states. We have that sin ∈ SI . For all input state s ∈ SI

there exists a unique outgoing transition (s, x, s′) ∈ δ. For this transition we
have that x ∈ X and s′ ∈ SO.

• SO is the set of output states. For all output state s ∈ SO we have that
for all y ∈ Y there exists a unique state s′ such that (s, y, s′) ∈ δ. In this
case, s′ /∈ SO. Moreover, there do not exist x ∈ X and s′ ∈ S such that
(s, x, s′) ∈ δ.

• SF and SP are the sets of fail and pass states, respectively. We say that
these states are terminal. That is, for all state s ∈ SF ∪ SP there do not
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exist z ∈ X ∪ Y and s′ ∈ S such that (s, z, s′) ∈ δ.

Finally, CT : (SP∪SI−{sin}) −→ V is a function associating random variables
with pass and input states.

Let ē = x1/y1, . . . , xr/yr be an input/output sequence and sT ∈ S. We write

T
ē

=⇒ sT if there exist states s12, s21, s22, . . . sr1, sr2 ∈ S such that for all 2 ≤
j ≤ r we have (sj1, xj, sj2) ∈ δ, for all 1 ≤ j ≤ r−1 we have (sj2, yj, s(j+1)1) ∈
δ, and {(sin, x1, s12), (sr2, yr, s

T )} ⊆ δ.

We say that a test T is valid if the graph induced by T is a tree with root at the
initial state sin. We say that a set of tests Tst = {T1, . . . , Tn} is a test suite.

If we are testing an implementation with input and output sets X and Y ,
respectively, tests are deterministic acyclic X ∪ Y labelled transition systems
with a strict alternation between input actions and output actions. After an
output action we may find either a leaf or another input action. Leaves can be
labelled either by pass or by fail. In addition, we add random variables to both
pass and input states. Let us remark that we do not consider a random variable
in the initial state of the test because, at that point, the testing process has
not started yet.

From now on we will assume that when we talk about tests we refer only to
valid tests. Next we define the application of a test to an implementation. Let
us recall that NTEvol(MI) is the set of input/output sequences from paths
that start at the initial state of MI .

Definition 13 Let T = (S ′, X, Y, δ′, sin, SI , SO, SF , SP , CT ) be a valid test and
MI = (S,X, Y, δ, s0) be a deterministic input-enabled SFSM. We denote the
application of the test T to MI by MI ‖ T . Let sT ∈ S ′ be a state of T . We

write MI ‖ T
ē

=⇒ sT if T
ē

=⇒ sT and ē ∈ NTEvol(MI).

We say that MI passes T , denoted by pass(MI , T ), if for all ē ∈ NTEvol(MI)

we have that MI ‖ T
ē

=⇒ sT implies sT does not belong to SF . We say that
MI stochastically passes T , denoted by passsto(MI , T ), if pass(MI , T ) and

MI ‖ T
ē

=⇒ sT implies δV(sin, ē) ≤ CT (sT ).

Let T S be a test suite. We say that MI passes T S, denoted by pass(MI , T S),
if for all T ∈ T S we have pass(MI , T ). We say that MI stochastically passes
T S, denoted by passsto(MI , T S), if for all T ∈ T S we have passsto(MI , T ).

Since we are assuming that implementations are input-enabled, the testing
process will conclude only when the test reaches either a fail or a pass state.
Moreover, if we are applying a test consisting of k inputs, in order to check
whether a test is successfully passed we only need to consider those evolutions
of MI having at most k inputs. Finally, let us remark that in the definition
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of passing a test the states sT cannot be output states since they are reached
after performing an input/output sequence. Thus, either sT is a fail state or
CT (sT ) is defined.

We conclude this section by showing the relation between adaptive test cases,
as introduced in Definition 8, and the alternative notion of test given in Defini-
tion 12. On the one hand, an adaptive test case can be used to bring the SUT
to a point where it will perform a transition forbidden by the specification.
On the other hand, the tests introduced in this section will return fail if they
detect an erroneous, with respect to the specification, behaviour. Next we will
show that, due to the nature of adaptive test cases, each adaptive test case will
be represented by a test suite, the adaptive test case and the test suite having
the same discriminatory power as shown in the forthcoming Proposition 3.

Definition 14 Let (x, f) ∈ T (X,Y ) be a non-empty adaptive test case and
M be a SFSM. We define the test suite generated by (x, f) with respect to
M , denoted by Generate((x, f),M), as the set of tests that can be produced
by applying the algorithm given in Figure 5. Given a set T S of adaptive test
cases we let Generate(T S,M) denote the test suite generated by the elements
of T S with respect to M and so Generate(T S,M) =

⋃

T∈T S Generate(T,M).

Let us remark that a single application of the algorithm given in Figure 5 re-
turns one test. However, by taking into consideration the different alternatives
of the algorithm, iterative applications will produce the desired test suite.

The algorithm works as follows. It keeps a set of auxiliary states of the test
that have not been completed yet. Each of these states can be considered a
pass state (step (1) of the algorithm). In addition, at most one of these states
can be used to continue the testing process (step (2) of the algorithm). In
this case, we add a branch labelled by the input of the auxiliary adaptive test
case and consider all the possible outputs. If the sequence performed from the
initial state (that is, eaux followed by the last input/output pair) cannot be
performed by the specification then the considered output reaches a fail state.
If this sequence can be performed but the adaptive test case concludes (that
is, after the output we get null) then the considered output reaches a pass
state. In the remaining case, the reached state is added to the set of auxiliary
states and the rest of auxiliary variables are updated accordingly. In addition,
in the last two cases, the random variable associated with the reached state
(this state will be either a pass or an input state) is set to a random variable
extracted from the specification.

Example 5 In Figure 4, {T1, T2} is the test suite generated by applying Def-
inition 14 to the adaptive test case σ1 given in Figure 2 with respect to the
SFSM given in Figure 1. Similarly, {T3, T4} is the test suite generated from σ2.
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Input: A non-empty adaptive test case (x, f) and a SFSM M = (S,X, Y, δ, s0).
Output: A test T = (S ′, X, Y, δ′, sin, SI , SO, SF , SP , CT ).

S ′ := {sin}; δ′, SI , SO, SF , SP := ∅; Saux := {(sin, ε, (x, f))}.
While Saux 6= ∅ do
• Choose (sT , eaux, (xaux, faux)) ∈ Saux.
• Choose one of the following two alternatives:
{Second alternative can be chosen only if Saux is singleton}

(1) If eaux 6= ε then {sT will be a pass state}
(a) Saux := Saux − {(sT , eaux, (xaux, faux))}; SP := SP ∪ {sT}.

(2) If Saux = {(sT , eaux, (xaux, faux))} then
(a) Saux := ∅.
(b) Consider a fresh state s′ /∈ S ′; S ′ := S ′ ∪ {s′}.
(c) SI := SI ∪ {sT}; SO := SO ∪ {s′}; δ′ := δ′ ∪ {(sT , xaux, s

′)}.
{Add an input transition labelled by xaux; then, consider

all outputs}
(d) For all y ∈ Y do

(i) Consider a fresh state sy /∈ S ′; S ′ := S ′ ∪ {sy}.
(ii) δ′ := δ′ ∪ {(s′, y, sy)}.
(iii) If eaux · xaux/y /∈ NTEvol(M) then SF := SF ∪ {sy}.

{These outputs lead to a fail state since they are

not expected by the specification}
(iv) If eaux · xaux/y ∈ NTEvol(M) and faux(y) = null then

SP := SP ∪ {sy}; CT (sy) := δV(s0, eaux · xaux/y).
{These outputs lead to a pass state since they are

expected but the adaptive test case finished here}
(v) If eaux · xaux/y ∈ NTEvol(M) and faux(y) 6= null then

{These outputs are expected. In subsequent

traversals of the loop, at most one of them will

lead to an input state where the test continues; the

rest will lead to pass states}
· CT (sy) := δV(s0, eaux · xaux/y).
· Saux := Saux ∪ {(sy, eaux · xaux/y, faux(y))}.
{New auxiliary adaptive test case, faux(y), is

continuation of the previous one after y}

Fig. 5. Generation of tests from an adaptive test case.

The proof of the following is easy but cumbersome. It only consists in showing
that an adaptive test case reaches Fail in the Product Machine if and only
if the test suite is not passed. The proof follows from the fact that we have
generated tests by taking into account the paths of the adaptive test case that
are allowed by the specification. Thus, null adaptive test cases are correctly
replaced by either pass or fail states.

Proposition 3 Let M be a SFSM, MI ∈ Φm
M , and (x, f) be a non-empty
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adaptive test case. We have that no sequence in the adaptive test case (x, f)
reaches the state Fail of the Product Machine P (M,MI) if and only if we
have passsto(MI , Generate((x, f),M)).

7.2 Test derivation in the new framework

Input: A SFSM M = (S,X, Y, δ, s0) having n states.
Output: A test T = (S ′, X, Y, δ′, sin, SI , SO, SF , SP , CT ).

S ′ := {sin}; δ′, SI , SO, SF , SP := ∅; len := 0; Saux := {(s0, sin)}.
While Saux 6= ∅ do
• Choose (sM , sT ) ∈ Saux.
• Choose one of the following two alternatives:
(1) Saux := Saux−{(sM , sT )}; SP := SP∪{s

T}. {sT will be a pass state}
(2) If Saux = {(sM , sT )} and len < nm then

(a) Saux := ∅; Choose x ∈ X.
(b) Consider a fresh state s′ /∈ S ′; S ′ := S ′ ∪ {s′}.
(c) SI := SI∪{s

T}; SO := SO∪{s
′}; δ′ := δ′∪{(sT , x, s′)}; len := len+1.

{Add an input transition labelled by x; then, consider

all the outputs}
(d) For all y ∈ Y such that 6 ∃ξ ∈ V .(y, ξ) ∈ δ2(s

M , x) do
{These outputs lead to a fail state since they are not

expected by the specification}
· Consider a fresh state sy /∈ S ′; S ′ := S ′ ∪ {sy}.
· SF := SF ∪ {sy}; δ′ := δ′ ∪ {(s′, y, sy)}.

(e) For all y ∈ Y such that ∃ξ ∈ V .(y, ξ) ∈ δ2(s
M , x) do

{These outputs are expected. At most one of them will

lead to an input state where the test continues; the

rest will lead to pass states}
· Consider a fresh state sy /∈ S ′; S ′ := S ′ ∪ {sy}.
· δ′ := δ′ ∪ {(s′, y, sy)}; CT (sy) := ξ.
· sM

1 := δy(s
M , x); Saux := Saux ∪ {(sM

1 , sy)}.

Fig. 6. Derivation of tests from a specification.

As explained in Section 6, if we are checking the conformance of an imple-
mentation belonging to Φm

M , that is, a deterministic, input-enabled machine
having at most m states, with respect to the specification M having n states,
then we know that it is enough to consider all the tests having at most nm
inputs. In the new framework we can also notably reduce this set by consid-
ering only relevant behaviours of the specification. Our derivation algorithm,
given in Figure 6, is an adaption of the one given in [29]. The basic idea con-
sists in traversing the specification in order to get all the possible evolutions
in an appropriate way. By considering the possible available choices we get
a test suite extracted from M . We denote this test suite by tests(M). Next
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we explain how our algorithm works. A set of pending situations Saux keeps
track of those states of the test whose outgoing transitions have not been com-
pleted yet. More precisely, a pair (sM , sT ) ∈ Saux indicates that we did not
complete the state sT of the test and the current state in the traversal of the
specification is sM . The set Saux initially contains only a pair with the initial
states of both SFSM and test. For each pair belonging to Saux we may choose
one possibility. It is important to remark that the second step can be applied
only when the set Saux becomes singleton. So, our derived tests correspond to
valid tests as introduced in Definition 12. The first possibility simply indicates
that the state of the test becomes a pass state. The second possibility takes
an input and generates a transition in the test labelled by this input. This
possibility can be taken only if the test is not too long, since we know that
it is enough to restrict tests to have a number of inputs less than or equal to
nm. Then, the whole sets of outputs is considered. If the output is not ex-
pected by the SFSM (step 2.(d) of the algorithm) then a transition leading to
a fail state is created. This could be simulated by a single branch in the test,
labelled by else, leading to a fail state (in the algorithm we suppose that all
the possible outputs appear in the test). For the expected outputs (step 2.(e)
of the algorithm) we create a transition with the corresponding output, add
the appropriate pair to the set Saux, and add the random variable labelling
the corresponding transition of the specification.

Let us note that finite tests are constructed simply by considering a step where
the second inductive case is not applied.

We now show that the test suites derived from specifications identify faults
in a SUT if and only if the SUT does not conform to the specification. The
proof of the result is based on the original proof [29] and taking into account
Proposition 3.

Theorem 3 Let M be a SFSM and MI ∈ Φm
M . We have MI ≤-conforms to

M if and only if passsto(MI , tests(M)).

If we put together the previous result and Theorem 2 we obtain the following
result that shows the relation between the test derivation algorithms given in
Sections 6 and 7.

Corollary 1 Let M be a SFSM and MI ∈ Φm
M . We have that no sequence in

the test suite T =
⋃

s∈Ŝ T (s)W introduced in Section 6, as returned by state
counting, reaches the state Fail of the Product Machine P (M,MI) if and only
if passsto(MI , tests(M)).

Theorem 4 Let M be a SFSM, MI ∈ Φm
M , and let T =

⋃

s∈Ŝ T (s)W be the
test suite introduced in Section 6, as returned by state counting. We have MI
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≤-conforms to M if and only if passsto(MI , Generate(T ,M)).

Proof : This follows from Theorem 2 and Proposition 3. ut

It is straightforward to show that Generate(T ,M) ⊆ tests(M) and thus that
we make testing more efficient by basing it on the test suite produced using
state counting.

7.3 Another testing framework: Recording observed time values

As we commented before, there are two important differences regarding how
testing is applied in [29] and in this paper. The first one, to consider random
variables in all the intermediate states of the testing process, was treated in
the previous section. In this section we show how the previous development
has to be modified to deal with the second difference: To compare random
variables of the specification with observed time values from the SUT.

When we test the SUT with respect to a SFSM we need to check not only
that the emitted output after we apply each input of the test is the same
as that specified. Systems with temporal requirements expressed by means
of random variables require us to also check that time values that the SUT
takes for producing each output fit with the random variable associated with
the corresponding transition in the specification. In order to do this, we will
collect a sample of time values and compare this sample with the random
variable. By comparison we mean that we will apply a criterion to decide,
with a certain confidence α, whether the sample could be generated by the
corresponding random variable. We only need to assume that there exists a
way to observe the time that the SUT takes to perform each step in testing.
This will allow us to register the observed time executions obtained from the
interaction with the implementation. Then, we will check that each sample
matches the corresponding random variable up to an established confidence
level. The notion of matching corresponds to the application of a hypothesis
contrast to decide whether the sample could be generated by the corresponding
random variable. In the appendix of this paper we show how such hypothesis
contrast can be formally performed. In the following, given a sequence t̄ =
t1, . . . , tl and 1 ≤ j ≤ l we let πk(t̄) = tk denote the k-th element of t̄.

Definition 15 Let MI be a SFSM. We say that x1/y1/t1, . . . , xl/yl/tl is an
observed timed execution of MI if the observation of MI shows that for all
1 ≤ j ≤ l, the time elapsed between the acceptance of the input xj and
the observation of the output yj is tj time units. We will sometimes refer
to x1/y1/t1, . . . , xl/yl/tl as (ē, t̄) where ē = x1/y1, . . . , xl/yl and t̄ = t1, . . . , tl.
Finally, let 1 ≤ k ≤ l. We denote by preseqk(ē) the prefix of ē having length
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k, that is, x1/y1, . . . , xk/yk.

Let J = {|(ē′1, t̄1), . . . , (ē
′
p, t̄p)|} be a multiset of timed executions and Υ =

{ē1, . . . , ēm} be a set of input/output sequences. We say that the function
Samplingk

(J,Υ) : Υ −→ ℘(IR+) is a k-sampling application of J for Υ if for all
ē ∈ Υ we have

Samplingk
(J,Υ)(ē) = {|πk(t̄) | ∃ē′.(ē′, t̄) ∈ J ∧|ē′| ≥ k∧preseqk(ē) = preseqk(ē

′)|}

Timed executions are input/output sequences together with the time that it
took to perform each transition. Regarding the definition of sampling applica-
tions, we just associate each proper prefix of an input/output sequence with
the observed execution time values of the last step of the subsequence.

Definition 16 Let M be a SFSM, MI ∈ Φm
M , J be a multiset of timed execu-

tions, and 0 ≤ α ≤ 1. Let us consider the set Υ = {ē | ∃ t̄.(ē, t̄) ∈ J}. We
say that MI (α, J) ≤-conforms to M if for all ē = x1/y1, . . . , xl/yl ∈ Υ there
exists some (x1, y1, ξ1) . . . (xk, yl, ξl) ∈ L(F (S)) such that for all 1 ≤ k ≤ l we
have that γ(ξk, Sampling

k
(J,Υ)(ē)) > α.

Intuitively, the observed time values corresponding to each prefix of the consid-
ered input/output sequences ē match the definition of the corresponding ran-
dom variable, that is, for all 1 ≤ k ≤ |ē| we have γ(ξk, Sampling

k
(J,Υ)(ē)) > α.

This implementation relation cannot be compared with the previous one since
the methodologies are completely different: On the one hand we compare
random variables while, on the other hand, we compare random variables
and time values. Next, we have to modify the notion of passing a test given
in Definition 13. The idea consists of applying time conditions to the set of
observed timed executions, not to timed evolutions of the implementations.
We need a set of test executions, associated with each evolution, to determine
whether they match the probability distribution function associated with these
random variables. In order to increase the degree of reliability, we will put
together all the observations so that we have more instances for each evolution.
In particular, some observations will be used several times. In other words,
an observation from a given test may be used to check the validity of another
test sharing the same observed sequence.

Definition 17 Let MI be a deterministic, input-enabled SFSM, T be a test,
and sT be a state of T . We write MI ‖ T

ē
=⇒t̄ sT if T

ē
=⇒ sT and (ē, t̄) is

an observed timed execution of MI . In this case we say that (ē, t̄) is a test
execution of MI and T . We say that a set of test executions of MI and T is a
test execution sample of MI and T .

Let Tst = {T1, . . . , Tn} be a test suite and J1, . . . , Jn be test execution samples
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of MI with T1, . . . , Tn, respectively. Let J =
⋃n

i=1 Ji, Υ = {ē | ∃ t̄.(ē, t̄) ∈ J}
and let us consider 0 ≤ α ≤ 1. We say that MI (α, J)- passes the test suite Tst

if pass(MI , Tst) and for all ē ∈ Υ and all T ∈ Tst such that MI ‖ T
ē

=⇒ sT ,

we have that γ(CT (sT ), Sampling
|ē|
(J,Υ)(ē)) > α.

Intuitively, a SUT passes a test if there does not exist an evolution leading to a
fail state. Once we know that the functional behaviour of the implementation
is correct with respect to the test, we need to check time conditions. The set J
corresponds to the observations of the (several) applications to MI of the
tests belonging to the test suite Tst. Let us intuitively explain the process. We
will apply each test belonging to the test suite to the implementation several
times. If we find an unexpected output then we stop the testing process and
conclude that the implementation is faulty. If we do not find such an error, for
each test we collect several observed timed executions corresponding to each
time that the application of the test reached a pass state. Thus, we obtain
for each test Ti a multiset {|(ēi

1, t̄1i), (ē
i
2, t̄2i), . . . , (ē

i
m, t̄mi)|}. These multisets,

more exactly the time values corresponding to each different evolution, will be
used to make the hypothesis contrast. Thus, we have to decide whether, for
each evolution ē, the observed time values corresponding to the last step of
the evolution (that is, Sampling

|ē|
(J,Υ)(ē)) match the definition of the random

variables appearing in the state of the test corresponding to the execution of
that evolution (that is, CT (sT )).

The proof of the following result is a simple adaption of a similar result in [29].

Theorem 5 Let M be a SFSM, MI ∈ Φm
M , J be a multiset of timed executions,

and 0 ≤ α ≤ 1. We have that MI (α, J) ≤-conforms to M if and only if MI

(α, J)- passes the test suite tests(M).

8 Conclusions

In this paper we have extended the state counting method of deriving tests
from a non-deterministic finite state machine (FSM) to the case of non-
deterministic stochastic FSMs. This model allows us to easily introduce time
requirements for the performance of actions by associating random variables
with the transitions. The notion of conformance has been represented by means
of an implementation relation where functional and temporal conditions are
considered, taking into account the restrictions imposed by a black-box frame-
work. The timing aspects of the definition of conformance used is parameter-
izable, allowing the techniques developed in this paper to be applied using a
range of implementation relations.

We have proposed a test generation algorithm, based on the presence of d-
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reachable and r-distinguishable states in the specification and the notion of
the Product Machine. This algorithm allows us to obtain a test suite T that
determines the conformance of a deterministic SUT with respect to a non-
deterministic specification with a given confidence. The required level of con-
fidence can be chosen by the tester and testing then involved repeatedly ap-
plying each element of T a sufficient number of times, the number of times
being determined by standard results from statistical sampling theory.

Finally, we have shown how previous relevant work on testing from stochastic
systems can be considered as a particular case of the work developed in this
paper. We have introduced a new notion of test to capture the alternative
testing framework. In this line, we have proved that an adaptive test case
has the same discriminatory power as a certain set of tests derived from the
specification.

There are a number of areas of future work. While many implementations
are deterministic, some are nondeterministic and so it would be interesting to
extend the results to the testing of a non-deterministic SUT. In testing from an
FSM it has been shown that sets of prefixed of sequences from a characterising
set W can be used in state identification, leading to the Wp-method [24], and
it seems likely that such an approach could be extended to SFSMs. The test
effort depends both on the size of the test suite and the number of times each
adaptive test case must be applied in order to provide the required level of
confidence. One approach to optimisation is to produce a minimal test suite
and then apply each adaptive test case a minimum number of times and this is
essentially what we do in this paper. However, the number of times we have to
apply an adaptive test case depends both on the required confidence and the
distributions associated with the adaptive test case. It thus seems likely that
better results will be provided by considering both aspects in one optimisation
phase. Finally, we have not considered the problem of finding a set W that
minimises the test effort.

Appendix - Statistics background: Hypothesis contrasts.

In this appendix we introduce one of the standard ways to measure the confi-
dence degree that a random variable has on a sample. In order to do so, we will
present a methodology to perform hypothesis contrasts. The underlying idea
is that a sample will be rejected if the probability of observing that sample
from a given random variable is low. In practice, we will check whether the
probability to observe a discrepancy lower than or equal to the one we have
observed is low enough. We will present Pearson’s χ2 contrast. This contrast
can be applied both to continuous and discrete random variables. The mech-
anism is the following. Once we have collected a sample of size n we perform
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the following steps:

• We split the sample into k classes which cover all the possible range of
values. We denote by Oi the observed frequency at class i (i.e. the number
of elements belonging to the class i).

• We calculate the probability pi of each class, according to the proposed
random variable. We denote by Ei the expected frequency, which is given by
Ei = npi.

• We calculate the discrepancy between observed frequencies and expected

frequencies as X2 =
∑k

i=1
(Oi−Ei)

2

Ei
. When the model is correct, this discrep-

ancy is approximately distributed as a random variable χ2 .
• We estimate the number of freedom degrees of χ2 as k − r− 1. In this case,

r is the number of parameters of the model which have been estimated by
maximal likelihood over the sample to estimate the values of pi (i.e. r = 0
if the model completely specifies the values of pi before the samples are
observed).

• We will accept that the sample follows the proposed random variable if
the probability of obtaining a discrepancy greater or equal to the discrep-
ancy observed is high enough, that is, if X2 < χ2

α(k − r − 1) for some
α high enough. Actually, as the margin to accept the sample decreases
as α increases, we can obtain a measure of the validity of the sample as
max{α | X2 < χ2

α(k − r − 1)}.

According to the previous steps, we can now present an operative definition
of the function γ which is used in this paper to compute the confidence of a
random variable on a sample.

Definition 18 Let ξ be a random variable and J be a multiset of real numbers
representing a sample. Let X2 be the discrepancy level of J on ξ calculated as
explained above by splitting the sampling space into k classes

C = {[0, a1), [a1, a2), . . . , [ak−2, ak−1), [ak−1,∞)}

where k is a given constant and for all 1 ≤ i ≤ k − 1 we have P (ξ ≤ ai) = i
k
.

We define the confidence of ξ on J with classes C, denoted by γ(ξ, J), as
max{α | X2 < χ2

α(k − 1)}.

The previous definition indicates that in order to perform a contrast hypothe-
sis, we split the collected values in several intervals having the same expected
probability. We compute the value for X2 as previously described and check
this figure with the tabulated tables corresponding to χ2 with k − 1 freedom
degrees (see, for example, www.statsoft.com/textbook/sttable.html).

Let us comment on some important details. First, given the fact that the
random variables that we use in our framework denote the passing of time,
we do not need classes to cover negative values. Thus, we will suppose that
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the class containing 0 will also contain all the negative values. Second, let us
remark that in order to apply this contrast it is strongly recommended that
the sample has at least 30 elements while each class must contain at least 3
elements.

Example 6 Let us consider a device that produces real numbers belonging
to the interval [0, 1]. We would like to test whether the device produces these
numbers randomly, that is, it does not have a number or sets of numbers that
have a higher probability of being produced than others. Thus, we obtain a
sample from the machine and we apply the contrast hypothesis to determine
whether the machine follows a uniform distribution in the interval [0, 1]. First,
we have to decide how many classes we will use. Let us suppose that we take
k = 10 classes. Thus, for all 1 ≤ i ≤ 9 we have ai = 0.i and P (ξ ≤ ai) = i

10
.

So, C = {[0, 0.1), [0.1, 0.2) . . . [0.8, 0.9), [0.9,∞)}.

Let us suppose that the multiset of observed values, after we sort them, is:

J =
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Since the sample has 48 elements we have that the expected frequency in
each class, Ei, is equal to 4.8. In contrast, the observed frequencies, Oi, are
4, 3, 7, 4, 4, 3, 7, 6, 5, 5. Next, we have to compute

X2 =
10
∑

i=1

(Oi − Ei)
2

Ei

= 4.08333

Finally, we have to consider the table corresponding to χ2 with 9 degrees of
freedom and find the maximum α such that 4.08333 < χ2

α(9). Since χ2
0.9(9) =

4.16816 and χ2
0.95(9) = 3.32511 we conclude that, with probability at least 0.9,

the machine produces indeed random values.
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[29] M. Núñez and I. Rodŕıguez. Towards testing stochastic timed systems. In 23rd
IFIP WG 6.1 Int. Conf. on Formal Methods for Networked and Distributed
Systems, FORTE’03, LNCS 2767, pages 335–350. Springer, 2003.

35



[30] A. Petrenko. Fault model-driven test derivation from finite state models:
Annotated bibliography. In 4th Summer School on Modeling and Verification of
Parallel Processes, MOVEP 2000, LNCS 2067, pages 196–205. Springer, 2001.

[31] A. Petrenko and N. Yevtushenko. Testing from partial deterministic FSM
specifications. IEEE Transactions on Computers, 54(9):1154–1165, 2005.

[32] A. Petrenko, N. Yevtushenko, and G. von Bochmann. Testing deterministic
implementations from their nondeterministic fsm specifications. In 9th IFIP
Workshop on Testing of Communicating Systems, IWTCS’96, pages 125–140.
Chapman & Hall, 1996.

[33] A. Petrenko, N. Yevtushenko, A.V. Lebedev, and A. Das. Nondeterministic
state machines in protocol conformance testing. In 6th IFIP Workshop on
Protocol Test Systems, IWPTS’93, pages 363–378. North Holland, 1993.

[34] G.M. Reed and A.W. Roscoe. A timed model for communicating sequential
processes. Theoretical Computer Science, 58:249–261, 1988.

[35] D.P. Sidhu and T.-K. Leung. Formal methods for protocol testing: A detailed
study. IEEE Transactions on Software Engineering, 15(4):413–426, 1989.

[36] J. Springintveld, F. Vaandrager, and P.R. D’Argenio. Testing timed automata.
Theoretical Computer Science, 254(1-2):225–257, 2001. Previously appeared as
Technical Report CTIT-97-17, University of Twente, 1997.

[37] M.. Uyar, M.A. Fecko, A.S. Sethi, and P.D. Amar. Testing protocols modeled
as FSMs with timing parameters. Computer Networks, 31(18):1967–1998, 1999.

[38] N. Yevtushenko, A.V. Lebedev, and A. Petrenko. On checking experiments
with nondeterministic automata. Automatic Control and Computer Sciences,
6:81–85, 1991.

36


