12,137 research outputs found

    Modelling Energy Consumption based on Resource Utilization

    Full text link
    Power management is an expensive and important issue for large computational infrastructures such as datacenters, large clusters, and computational grids. However, measuring energy consumption of scalable systems may be impractical due to both cost and complexity for deploying power metering devices on a large number of machines. In this paper, we propose the use of information about resource utilization (e.g. processor, memory, disk operations, and network traffic) as proxies for estimating power consumption. We employ machine learning techniques to estimate power consumption using such information which are provided by common operating systems. Experiments with linear regression, regression tree, and multilayer perceptron on data from different hardware resulted into a model with 99.94\% of accuracy and 6.32 watts of error in the best case.Comment: Submitted to Journal of Supercomputing on 14th June, 201

    Power Modelling for Heterogeneous Cloud-Edge Data Centers

    Get PDF
    Existing power modelling research focuses not on the method used for developing models but rather on the model itself. This paper aims to develop a method for deploying power models on emerging processors that will be used, for example, in cloud-edge data centers. Our research first develops a hardware counter selection method that appropriately selects counters most correlated to power on ARM and Intel processors. Then, we propose a two stage power model that works across multiple architectures. The key results are: (i) the automated hardware performance counter selection method achieves comparable selection to the manual selection methods reported in literature, and (ii) the two stage power model can predict dynamic power more accurately on both ARM and Intel processors when compared to classic power models.Comment: 10 pages,10 figures,conferenc

    On the Estimation of Nonrandom Signal Coefficients from Jittered Samples

    Get PDF
    This paper examines the problem of estimating the parameters of a bandlimited signal from samples corrupted by random jitter (timing noise) and additive iid Gaussian noise, where the signal lies in the span of a finite basis. For the presented classical estimation problem, the Cramer-Rao lower bound (CRB) is computed, and an Expectation-Maximization (EM) algorithm approximating the maximum likelihood (ML) estimator is developed. Simulations are performed to study the convergence properties of the EM algorithm and compare the performance both against the CRB and a basic linear estimator. These simulations demonstrate that by post-processing the jittered samples with the proposed EM algorithm, greater jitter can be tolerated, potentially reducing on-chip ADC power consumption substantially.Comment: 11 pages, 8 figure

    Feedback and time are essential for the optimal control of computing systems

    Get PDF
    The performance, reliability, cost, size and energy usage of computing systems can be improved by one or more orders of magnitude by the systematic use of modern control and optimization methods. Computing systems rely on the use of feedback algorithms to schedule tasks, data and resources, but the models that are used to design these algorithms are validated using open-loop metrics. By using closed-loop metrics instead, such as the gap metric developed in the control community, it should be possible to develop improved scheduling algorithms and computing systems that have not been over-engineered. Furthermore, scheduling problems are most naturally formulated as constraint satisfaction or mathematical optimization problems, but these are seldom implemented using state of the art numerical methods, nor do they explicitly take into account the fact that the scheduling problem itself takes time to solve. This paper makes the case that recent results in real-time model predictive control, where optimization problems are solved in order to control a process that evolves in time, are likely to form the basis of scheduling algorithms of the future. We therefore outline some of the research problems and opportunities that could arise by explicitly considering feedback and time when designing optimal scheduling algorithms for computing systems

    Semantic Compression for Edge-Assisted Systems

    Full text link
    A novel semantic approach to data selection and compression is presented for the dynamic adaptation of IoT data processing and transmission within "wireless islands", where a set of sensing devices (sensors) are interconnected through one-hop wireless links to a computational resource via a local access point. The core of the proposed technique is a cooperative framework where local classifiers at the mobile nodes are dynamically crafted and updated based on the current state of the observed system, the global processing objective and the characteristics of the sensors and data streams. The edge processor plays a key role by establishing a link between content and operations within the distributed system. The local classifiers are designed to filter the data streams and provide only the needed information to the global classifier at the edge processor, thus minimizing bandwidth usage. However, the better the accuracy of these local classifiers, the larger the energy necessary to run them at the individual sensors. A formulation of the optimization problem for the dynamic construction of the classifiers under bandwidth and energy constraints is proposed and demonstrated on a synthetic example.Comment: Presented at the Information Theory and Applications Workshop (ITA), February 17, 201

    Algorithm and Hardware Design of Discrete-Time Spiking Neural Networks Based on Back Propagation with Binary Activations

    Full text link
    We present a new back propagation based training algorithm for discrete-time spiking neural networks (SNN). Inspired by recent deep learning algorithms on binarized neural networks, binary activation with a straight-through gradient estimator is used to model the leaky integrate-fire spiking neuron, overcoming the difficulty in training SNNs using back propagation. Two SNN training algorithms are proposed: (1) SNN with discontinuous integration, which is suitable for rate-coded input spikes, and (2) SNN with continuous integration, which is more general and can handle input spikes with temporal information. Neuromorphic hardware designed in 40nm CMOS exploits the spike sparsity and demonstrates high classification accuracy (>98% on MNIST) and low energy (48.4-773 nJ/image).Comment: 2017 IEEE Biomedical Circuits and Systems (BioCAS
    • …
    corecore