25 research outputs found

    On the linear convergence of the stochastic gradient method with constant step-size

    Get PDF
    The strong growth condition (SGC) is known to be a sufficient condition for linear convergence of the stochastic gradient method using a constant step-size γ\gamma (SGM-CS). In this paper, we provide a necessary condition, for the linear convergence of SGM-CS, that is weaker than SGC. Moreover, when this necessary is violated up to a additive perturbation σ\sigma, we show that both the projected stochastic gradient method using a constant step-size (PSGM-CS) and the proximal stochastic gradient method exhibit linear convergence to a noise dominated region, whose distance to the optimal solution is proportional to γσ\gamma \sigma

    A Parallel SGD method with Strong Convergence

    Get PDF
    Abstract This paper proposes a novel parallel stochastic gradient descent (SGD) method that is obtained by applying parallel sets of SGD iterations (each set operating on one node using the data residing in it) for finding the direction in each iteration of a batch descent method. The method has strong convergence properties. Experiments on datasets with high dimensional feature spaces show the value of this method. Introduction. We are interested in the large scale learning of linear classifiers. Let {x i , y i } be the training set associated with a binary classification problem (y i ∈ {1, −1}). Consider a linear classification model, y = sgn(w T x). Let l(w · x i , y i ) be a continuously differentiable, non-negative, convex loss function that has Lipschitz continuous gradient. This allows us to consider loss functions such as least squares, logistic loss and squared hinge loss. Hinge loss is not covered by our theory since it is non-differentiable. Our aim is to to minimize the regularized risk functional f (w)

    Structure and Dynamics of Information Pathways in Online Media

    Full text link
    Diffusion of information, spread of rumors and infectious diseases are all instances of stochastic processes that occur over the edges of an underlying network. Many times networks over which contagions spread are unobserved, and such networks are often dynamic and change over time. In this paper, we investigate the problem of inferring dynamic networks based on information diffusion data. We assume there is an unobserved dynamic network that changes over time, while we observe the results of a dynamic process spreading over the edges of the network. The task then is to infer the edges and the dynamics of the underlying network. We develop an on-line algorithm that relies on stochastic convex optimization to efficiently solve the dynamic network inference problem. We apply our algorithm to information diffusion among 3.3 million mainstream media and blog sites and experiment with more than 179 million different pieces of information spreading over the network in a one year period. We study the evolution of information pathways in the online media space and find interesting insights. Information pathways for general recurrent topics are more stable across time than for on-going news events. Clusters of news media sites and blogs often emerge and vanish in matter of days for on-going news events. Major social movements and events involving civil population, such as the Libyan's civil war or Syria's uprise, lead to an increased amount of information pathways among blogs as well as in the overall increase in the network centrality of blogs and social media sites.Comment: To Appear at the 6th International Conference on Web Search and Data Mining (WSDM '13

    An Approximate Shapley-Folkman Theorem

    Full text link
    The Shapley-Folkman theorem shows that Minkowski averages of uniformly bounded sets tend to be convex when the number of terms in the sum becomes much larger than the ambient dimension. In optimization, Aubin and Ekeland [1976] show that this produces an a priori bound on the duality gap of separable nonconvex optimization problems involving finite sums. This bound is highly conservative and depends on unstable quantities, and we relax it in several directions to show that non convexity can have a much milder impact on finite sum minimization problems such as empirical risk minimization and multi-task classification. As a byproduct, we show a new version of Maurey's classical approximate Carath\'eodory lemma where we sample a significant fraction of the coefficients, without replacement, as well as a result on sampling constraints using an approximate Helly theorem, both of independent interest.Comment: Added constraint sampling result, simplified sampling results, reformat, et

    Non-Uniform Stochastic Average Gradient Method for Training Conditional Random Fields

    Full text link
    We apply stochastic average gradient (SAG) algorithms for training conditional random fields (CRFs). We describe a practical implementation that uses structure in the CRF gradient to reduce the memory requirement of this linearly-convergent stochastic gradient method, propose a non-uniform sampling scheme that substantially improves practical performance, and analyze the rate of convergence of the SAGA variant under non-uniform sampling. Our experimental results reveal that our method often significantly outperforms existing methods in terms of the training objective, and performs as well or better than optimally-tuned stochastic gradient methods in terms of test error.Comment: AI/Stats 2015, 24 page
    corecore