4,507 research outputs found

    Calculation of the Autocorrelation Function of the Stochastic Single Machine Infinite Bus System

    Full text link
    Critical slowing down (CSD) is the phenomenon in which a system recovers more slowly from small perturbations. CSD, as evidenced by increasing signal variance and autocorrelation, has been observed in many dynamical systems approaching a critical transition, and thus can be a useful signal of proximity to transition. In this paper, we derive autocorrelation functions for the state variables of a stochastic single machine infinite bus system (SMIB). The results show that both autocorrelation and variance increase as this system approaches a saddle-node bifurcation. The autocorrelation functions help to explain why CSD can be used as an indicator of proximity to criticality in power systems revealing, for example, how nonlinearity in the SMIB system causes these signs to appear.Comment: Accepted for publication/presentation in Proc. North American Power Symposium, 201

    Time-dependent opportunities in energy business : a comparative study of locally available renewable and conventional fuels

    Get PDF
    This work investigates and compares energy-related, private business strategies, potentially interesting for investors willing to exploit either local biomass sources or strategic conventional fuels. Two distinct fuels and related power-production technologies are compared as a case study, in terms of economic efficiency: the biomass of cotton stalks and the natural gas. The carbon capture and storage option are also investigated for power plants based on both fuel types. The model used in this study investigates important economic aspects using a "real options" method instead of traditional Discounted Cash Flow techniques, as it might handle in a more effective way the problems arising from the stochastic nature of significant cash flow contributors' evolution like electricity, fuel and CO(2) allowance prices. The capital costs have also a functional relationship with time, thus providing an additional reason for implementing, "real options" as well as the learning-curves technique. The methodology as well as the results presented in this work, may lead to interesting conclusions and affect potential private investment strategies and future decision making. This study indicates that both technologies lead to positive investment yields, with the natural gas being more profitable for the case study examined, while the carbon capture and storage does not seem to be cost efficient with the current CO(2) allowance prices. Furthermore, low interest rates might encourage potential investors to wait before actualising their business plans while higher interest rates favor immediate investment decisions. (C) 2009 Elsevier Ltd. All rights reserved
    corecore