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A B S T R A C T

This work investigates and compares energy-related, private business strategies, potentially interesting

for investors willing to exploit either local biomass sources or strategic conventional fuels. Two distinct

fuels and related power-production technologies are compared as a case study, in terms of economic

efficiency: the biomass of cotton stalks and the natural gas. The carbon capture and storage option are

also investigated for power plants based on both fuel types. The model used in this study investigates

important economic aspects using a ‘‘real options’’ method instead of traditional Discounted Cash Flow

techniques, as it might handle in a more effective way the problems arising from the stochastic nature of

significant cash flow contributors’ evolution like electricity, fuel and CO2 allowance prices. The capital

costs have also a functional relationship with time, thus providing an additional reason for implementing

‘‘real options’’ as well as the learning-curves technique. The methodology as well as the results presented

in this work, may lead to interesting conclusions and affect potential private investment strategies and

future decision making. This study indicates that both technologies lead to positive investment yields,

with the natural gas being more profitable for the case study examined, while the carbon capture and

storage does not seem to be cost efficient with the current CO2 allowance prices. Furthermore, low

interest rates might encourage potential investors to wait before actualising their business plans while

higher interest rates favor immediate investment decisions.
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1. Introduction

Economic efficiency and sustainable development are admit-
tedly closely linked. Concerning energy production, private
investors are facing important dilemmas regarding the fuel type
and the related technologies that they should invest in. Power
production is also believed to be a high-risk business. Not only the
innovations of emerging power generation methods but also the
uncertainties of electricity and fuel prices contribute to the
establishment of an obscure and unstable business environment
and may have a direct impact on the feasibility as well as on the
scale and the location of an energy-related investment. Further-
more, environmental constraints as well as the implementation of
the European emissions trading system (EU-ETS) impose addi-
tional risks and implications that should be carefully considered.
On the other hand, electricity markets have gone through a
deregulation process, which has introduced competition in a
formerly state-regulated sector. Therefore, the planning for
engagement in the new energy market arena should focus not
only on economic considerations, such as the minimisation of
production costs, but also on strategic fuel selection and
minimisation of CO2 emissions. These issues, together with the
recent rapid changes of legal status aiming at deregulation,
contribute to the need for revised decision making processes, more
than ever crucial for successful investments.

Greece stands as a typical example of a geographical area, well
favored to bear high levels of renewable energy potentials. A big
part of central Greece, Thessaly, is an agricultural area where more
than 1500 km2 are cultivated with cotton; certainly, the biggest in
Greece and one of the biggest in Europe. The key-players of the
local cotton supply chain – mainly cotton ginneries – might be

interested to invest in energy production based on cotton-stalks
biomass in order to create a counterbalance for their grid
electricity expenses. On the other hand, natural gas (NG) has
been strategically selected by the Greek State as the next
generation base-load fuel and appears to have a constantly
increasing penetration in the domestic energy market. This
conventional energy source is characterised by relatively low
emissions, minimum losses and stable pressure and flow rate
conditions. Moreover, its distribution network is consisted of a
main pipeline, which traverses Eastern Greece including the target
area of Thessaly as well as the biggest industrial areas which are
located between Thessaly and Attica. It is noted that the industries
located in this geographical area constitute the growth workhorse
of the Greek economy.

The starting point of the present study is an industrial user
located in Thessaly, who is considering a power-production
investment. The following two options appear to be more feasible:

1. Exploiting the local renewable energy source (cotton-stalk
biomass).

2. Investing in a low-emission, low-cost, conventional fuel (natural
gas).

Alternatively, there is a third option, which does not include any
future business plans:

3. Maintain the current status (no investment—keep paying for
grid electricity).

Finding the most attractive option is the primary objective of
the present study. An integrated computational model has been
created with a ‘‘real options’’ perspective. The traditional ways of
deterministic financial analysis of investments, like the Discounted
Cash Flow (DCF) analysis, are not capable of handling adequately
the increased uncertainty appearing in the prices of electricity,
fuels and CO2 allowances [1,2]. This means that the above
mentioned investment options should be compared, considering
not only the current status of the energy market and the related
business environment, but also their future prospects and
evolution. This imposes a factor of uncertainty, and therefore an
additional option is investigated: ‘‘wait before investing’’. Hence,
the goal is to find the highest-NPV investment, as well as its
optimal realisation time. A major milestone of the model is to
simulate and correlate the variables under uncertainty so that their
forecasting would take into account their functional dependencies.
In order to accomplish the above milestones and objectives, some
advanced computational techniques had to be implemented, to
overcome the difficulties arising from the nonlinear interaction of
the various stochastic variables.

The present study is structured in brief as follows: In Section 2, a
literature review is presented. In Section 3 an overview of the
model is given while details of the mathematical and computa-
tional model are provided in Sections 4 and 5, respectively. Section
6 includes the results of the model’s implementation. Finally, in
Section 7 a critical analysis is presented with suggestions on
strategic interventions and sustainability impact of the investi-
gated energy resources and their related power-production
technologies.

2. Scientific and technological background

2.1. Business interest and competitive technologies

Natural Gas Combined Cycle (NGCC) and related technologies
have been mature enough due to almost three decades of
experience and implementation on power production. Numerous

Nomenclature

ce electricity selling price (s/MWhel)

cf fuel cost (s/MWhf)

ef emissions factor of fuel (ton CO2/MWhf)

n efficiency factor (%)

fcap capacity factor

F fixed costs (s/MWel/year)

V variable costs (s/MWhel)

cCO2
CO2 allowance price (s/ton)

Pmax maximum load of installed capacity (MWel)

Pcum,i,v cumulative installed capacity (worldwide, of tech-

nology i, in year v)

C(t) time function of power-averaged algebraic cash

flow (s/MWh)

dt time differential (day)

FBF algebraic balance of annual cash flow (s/year)

ir interest rate (%)

bi learning rate for a power plant type i

NPVi,v net present value for a power plant of type i,

commissioned at time v (s)

CIi,v investment (capital) cost for a power plant of type i,

commissioned at time v (s/kW)

T operational life-time (years)

ID investment decision time (years ahead from today)

v setup and commissioning time (years ahead from

today)

i indicator of power plant type (technology � fuel)
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plants have been installed all over the world. NGCC operates in two
discrete phases using a combination of two thermodynamic cycles:
gas-turbine and steam-turbine. After the combustion of natural
gas, a gas-turbine exploits flue-gas enthalpy for power generation
(1st phase). The remaining gas enthalpy is then exploited by an
HRSG (heat recovery steam generator) in order to run a steam-
turbine which produces additional electricity (2nd phase), thus
increasing the overall efficiency of the power plant. 50 Hz gas-
turbines may have a capacity in the range 20–400 MWel while
steam-turbines may have a capacity in the range 6–200 MWel. As a
rule of thumb it may be considered that gas-turbines represent the
66% of the plants’ output [3]. NGCC is a flexible method for natural
gas exploitation achieving significantly high overall HHV efficiency
(Higher Heating Value), up to 60%. In some studies like [4] it is
reported that NGCC capital costs may be as low as 550 $/kW
although this seems to be a rather optimistic value. In the same
study, the fuel costs are considered to be 3.46 $/GJ and opera-
tional–maintenance costs (O&M) are 3 $/MWh. Natural gas plants
emit 95 and 83% fewer metric tons of SOx and NOx, respectively,
than an average coal plant and less than one-half of the CO2

emitted by a conventional coal fired plant [5].
Gasification of biomass on the other hand is a competitive

technology which produces hydrogen reach gases (synthesis-gas
or syngas), suitable for a single gas-turbine system, while it
separates tar and char. The syngas is usually consisted of a CO/H2

mixture which is able to be burned in a combustion chamber and
the resulting flue-gas enthalpy is used to run a gas-turbine, thus
producing electricity with an expected efficiency of 35% [6].
Alternatively, supercritical steam-turbines might be used espe-
cially for the case of solid fuel mixes. The efficiencies reported for
projects based on supercritical steam-turbine technology, are close
to the levels of 40%, due to the utilisation of materials specifically
manufactured for ‘‘smart’’ strengthening against corrosion in very
high temperatures [7]. This technology is characterised by the
advantage of high MTBFs (Mean Time Between Failures) compared
to the gasification technology and accompanied syngas usage. The
syngas combustion usually results in short gas-turbine MTBFs
mainly due to micro-parts which contribute to turbine blades
corrosion. Consequently, significantly higher maintenance costs
are reported and moreover, the availability falls significantly
resulting to lower capacity factors [6].

IGCC (Integrated Gasifier Combined Cycle) is an emerging
power-production technology, consisted of a gasifier and a
combined cycle for power production. IGCC’s individual compo-
nents are mature technologies as stated above but integrated IGCC
systems are not yet so commonly installed. Historically, power
generating systems with a capacity higher than 100 MWel based on
biomass feed stocks, were deemed infeasible because of the
associated feed requirements. However, the use of advanced
combined cycle technology reduces the fuel requirements to
manageable levels because of the increases in generating
efficiency. Some elaborated studies have been carried out
investigating the feasibility of IGCC technology for biomass
exploitation (Biomass Integrated Gasification Combined Cycle or
BIGCC projects). In [8], an extensive study of BIGCC systems is
presented, in the range of 56–132 MWel. The net HHV efficiencies
reported on that study fluctuate in the range 36–39.7%. The capital
costs fluctuate in the levels of 1300–1700 $/kW and the cost of
electricity (COE) is estimated close to 0.054–0.063 $/kWh (con-
stant prices assuming amortisation at 4.5% interest rate, over 30
years of operational life-time with a capacity factor 0.8). Rhodes
and Keith [4], analysed also, important economic aspects of BIGCC
systems in the range of 110–149 MWel and produced some very
interesting results. In this study, a BIGCC plant without a CO2

capture and storage (sequestration) system (CCS), with an
estimated HHV net efficiency of 34% and net generation

�149 MWel, may have a capital cost of 1250 $/kW and annual
O&M costs 100 $/kW, while its COE might be as low as 0.059 $/
kWh. In the same study a BIGCC plant with CCS and net generation
of 123 MWel might present a lower HHV efficiency (�28%), higher
capital costs (approximately 1730 $/kW) while its COE could be as
high as 0.082 $/kWh due to the high CCS costs. In a more recent
study [9], higher net efficiencies are envisaged for the close future
due to ongoing improvements on IGCC technology and some
interesting data for IGCC plants already installed are listed within a
capacity range 100–545 MWel. The assumptions for IGCC technol-
ogy indicate capital costs �1450 $/kW, and net HHV efficiency in
the range 40–50% provided that a CCS system is not installed. In the
case of IGCC/CCS the capital costs rise to the levels of 2000 $/kW.

Biomass as well as NG are both eco-friendly fuels compared
with other fossils like coal or lignite. Certainly, biomass is a
renewable source contributing significantly to sustainability but
NG might become also an attractive solution for potential
investors. Economic efficiency of bioenergy may have a significant
impact on sustainable development, especially in a region which
depends economically on seed-cotton life cycle. Cotton-stalk
biomass is a zero CO2 emission fuel which requires careful
procedural and organisational analysis in order to design its
supply-chain network. Logistics costs contribute significantly to
the costs of a biomass-fuelled power plant as can be seen in [10],
where a logistical analysis of cotton-stalk biomass in Thessaly has
been carried out. The engagement of multiple biomass sources is a
very promising concept for reducing the logistics costs and
revitalising degraded agricultural areas, while its potential
advantages as well as limitations have been modelled in [11].

2.2. Real options

In investment problems, some variables might present a
volatile time pattern. Older DCF methods were exclusively used
in the past without gaining insight in the non-stationary and highly
unstable profile of modern investment games. Trigeorgis [12]
presented in 1996 the real options (RO) concept, which is a more
elaborate type of investment analysis and deals with the future
projections of basic parameters like expected incomes and
expenses. Suitable probabilistic techniques and forecasting meth-
ods – presented by Dixit and Pindyck [13] – may fit in RO studies in
order to deal with uncertainties. A variety of mathematical and
computational models have been recently created using RO
analysis and concerning energy-related investments. One could
distinguish two separate classes of models based on RO analysis:
(i) those who suggest investment options for private energy-
related businesses [14,15] and (ii) those dealing with policy
interventions and suggesting State-originating power licensing
procedures like in [16] and [2]. The present study implements the
‘‘real options’’ concept for private investments, and therefore it
should be classified to the first (i) category of financial modelling.

More specifically, the investment costs are considered to be a
logarithmic function of time according to the learning-curves
technique [2,17] so that the competitiveness and experience
acquired by previous projects is taken into account. The CO2

trading scheme, activated recently in Europe through the EU-ETS
has become a reality and energy-related business has been greatly
affected by it. The CO2 allowance price – a rather volatile function
of time – is projected to the future using appropriate forecasting
methods which will be described in the mathematical model. Fuel
costs may also be characterised by unstable profiles mainly due to
endogenous dependences on inflation rate. For example, their
logistical costs include the transportation costs which may be
linked to personnel expenses or oil price variations. Finally the
incomes, which in our case come from electricity selling to the
national grid, present a non-stationary time-path and therefore,
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are forecasted from historical data, provided that a fossil fuel is
utilised for power production. In the case of power-production
based on renewable sources, the Greek law defines a fixed price
and a price evolution algorithm – contractually agreed – for every
kWh sold to the grid.

Among the most basic components of a real option study is the
forecasting computational algorithm. A variety of existing algo-
rithms like ARMA and ARIMA models [18] and GARCH type of
models [19,20] are mainly used for mid-range forecasting tasks.
The random walk methods like the Ito process are generalised
stochastic Wiener processes with normally distributed jumps
which usually succeed in producing reasonable results within
sufficiently shorter computational times, and have been used for
electricity and fuel price projections [14,15]. The Geometric
Brownian Motion (GBM) [21] is one of the most common random
walk models, mainly used for mid-range forecasts. It is usually
simulated with an Euler–Marujama solver [22] while a Monte-
Carlo approximation [23] is used to average the solutions set.

2.3. Contribution of the study

This work might prove to be a pilot reference for similar
comparative studies, provided that historical data are available for
target fuel prices and their related power-production technologies
in order to reveal their functional correlations. Apart from the
results presented in this article, the methodological contribution of
the study may be summarised in the following combinations of
key-points:

1. A time-dependent comparison of NGCC with biomass-fired
plants is performed in terms of economic efficiency and within
the frame of a ‘‘real options’’ method.

2. An impact assessment of CO2 trading to energy investments and
business plans is performed, including the emerging carbon
capture and storage (CCS) technology and relevant applications.

3. Non-stationary time projections of capital costs are attempted
using appropriate learning rates, thus reflecting competitive-
ness and cumulative experience on similar projects for each
technology.

3. Methodology

3.1. Description of the case study and the potential investing options

An investment intention for an IGCC unit or alternatively a
single supercritical HRSG, with net efficiency �40% which would
be able to exploit the entire amount of Thessaly’s cotton-stalk
biomass, requires a total plant capacity in the range of 100–
120 MWel. This is a direct output of the cotton-stalk HHV – which is
close to 14,000 kJ/kg – and its production per area unit which is
moderately high, 300 ton/km2 in wet basis [10]. There are many
key-players willing to engage in the energy market not only in
order to serve their own energy needs, but also to have a chance for
profitable business opportunities. Such potential investors – like
ginnery or seed-oil factory owners – might wish to exploit local
biomass (cotton-stalk residues) not only because they are already a
part of its supply chain, but also because they are its main
industrial end-users. Nonetheless, other users might be interested,
such as hotels, big hospitals, farms, and factories with significant
energy needs like a local cement producing factory which is
currently fuelled by old tires. On the other hand, natural gas
pipelines have recently crossed Thessaly and constitute a tempting
alternative fuel. The HHV of natural gas is significantly higher than
that of biomass (37–41 MJ/m3), which is twice the HHV of coal gas,
and eight times the HHV of commercial producer gas [24,25].
Simultaneously, its procedural, organisational and logistical

requirements are moderate, since only the connection to the
main distribution network is needed—provided of course that it
has been already installed. It is emphasised that within the frame
of this study, the business interest focused on electricity selling to
the grid and not on auto-producer activities.

Concerning the EU-ETS, two different scenarios for the CO2

allowances allocation policy have been considered:

� No free allowances after the year 2012.
� The CO2 allowances are always free (their price is always equal to

zero).

The second scenario is analysed in order to assess the impact of
the EU-ETS in the investigated options.

3.2. An overview of the model

The starting point is the target plant’s capacity. This is a feed
stock driven calculation, which is based on the hypothetical
exploitation of the entire cotton-stalk biomass of Thessaly and thus
determines a biomass-fired plant whose capacity is approximately
100 MWel. Apparently, the power plant capacity should be the
same for both fuel types so that a comparison would be feasible.
Alternatively, and in the present study, the starting point is a fixed
investment cost equal to that required for the above-mentioned
biomass-fuelled plant. In that case, the capacity of the other
investigated plant types is modified accordingly.

Electricity, fuel, and CO2 allowance prices are then forecasted by
solving appropriate SDEs with an Euler–Marujama solver which
embeds a Monte-Carlo subroutine. The forecasted numerical data
‘‘feed’’ the next step of the model, which is an attempt to (i) find an
optimum investing time-point and (ii) select the most interesting
investing option. This process is performed using a time iterative
procedure. An NPV calculation is repeatedly shifted by 1-year steps,
meaning that the decision for investment may be postponed for as
many years as needed for the investment to be more profitable. By
this way, an array of the project NPVs is created supposing that the
hypothetical investment will take place during sometime in the
close future (within the next 15 years). The optimality is determined
by selecting the maximum NPV among the 15 years decision period.
Emission’s trading costs and related revenues (in the biomass/CCS
plants) are embedded in the iterative procedure as contributors to
the financial balancing function. The investment costs are calculated
using the method of learning curves, so that competitiveness and
experience acquired by previous projects are reflected to their time-
depended calculated values.

The model is flexible and the modification of input data is easy,
thus requiring short time for switching between case studies. Each
run can analyse a case study comprised of four different power-
production technologies and/or associated fuels which in the
present work are: (a) biomass-fired plant without CCS, (b)
biomass/CCS, (c) NGCC without CCS, and (d) NGCC/CCS. A fifth
option is also calculated which is the AS-IS status of the potential
investor (i.e. no investment; using grid electricity). In the next
paragraphs, the mathematical model is described analytically with
details on technical aspects.

4. Design of the mathematical model

The essential idea is based on the ‘‘real options’’ concept:
Instead of comparing different investments using the traditional
NPV criterion (prone to immediate investment decisions), one
could alternatively investigate the optimal time for investment
and engage it as an independent unknown variable. This type of
investment analysis introduces a stochastic nature which might
shed some light on crucial aspects:
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(i) Should an investor wait before realising his/her business plan
or not?

(ii) How much time should he/she wait?
(iii) What kind of an investment could prove to be the most

promising?

The road map to construct such a model comprises of the
following tasks.

4.1. Future projections

A random walk type simulation has been used in this study in
order to deal with the uncertainties imposed: the Geometric
Brownian Motion (GBM). The assumption that the electricity and
fuel price volatilities are normally distributed [21] has been an
additional argument for the utilisation of a GBM model. The
stochastic differential equation (SDE) of the GBM model was
simulated using an Euler–Marujama type solver [22]. A Monte-
Carlo subroutine [23] was then used in order to average the
multiple sets of forecasted variables. Typically, 100 solutions are
averaged in order to produce a mean SDE solution. The volatility
patterns of the different fuel prices should be mathematically
correlated since their past correlation can strongly impact their
future evolution [15]. The linkage of biomass price to NG price
should be investigated, since they both depend on oil prices,
though to a different extent [10]. The same stands for the volatility
patterns of electricity prices and demanded loads. The random
walk approximation method used in this study allows the
simulation of generalised multivariate stochastic processes, and
provides flexible and powerful simulation architecture. Para-
meters like mean drift, correlations and standard deviation are
generated by the past data. The procedure supports general
nonlinear relationships commonly found in SDE simulations. These
paths, driven by vector-valued Brownian Motions could be easily
simulated within short computational times. This kind of
simulation approximates the underlying multivariate continu-
ous-time process using vector-valued SDEs, which are described in
Appendix A.

4.2. Calculation of the project NPV

The previously forecasted prices contribute either as incomes or
expenses to the financial balance function (FBF) which is calculated
algebraically on a day-by-day basis. The integral of the daily FBFs is
then calculated for each year of plant operation. In mathematical
formulation, the annual cash flow of a power plant is given by
Eq. (1):

FBF ¼ Pmax � f ca p �
Z

CðtÞdt � F � Pmax (1)

The time differential (dt) is assumed to be equal to 1-day
interval. Within the context of EU-ETS implementation, the
algebraic balance of the daily cash flows is calculated by
subtracting the operational expenses of the power plant (fuel
costs, CO2 costs, maintenance and other variable costs) from the
electricity sales incomes to the national grid. This can be seen in
the following Eq. (2):

CðtÞ ¼ ceðtÞ �
c f ðtÞ

n
�

e f

n
cCO2
ðtÞ � VðtÞ (2)

The costs for the emissions trading correspond to the expenses
of obtaining the required emission allowances for conventional
power plants, whilst the revenues correspond to the incomes from
trading the emission allowances generated by using biomass fuels
and CCS systems. In case of negative CO2 emissions – a
consequence of CCS utilisation in a biomass-fired plant – the

Eq. (2) is still valid provided that input (ef) is modified accordingly
(i.e. negative ef). On the other hand, if a biomass-fired plant
without CCS is the case, neutral CO2 emissions lead to ef = 0.
Considering Eq. (1) as the integral of daily cash flows for 1 year, its
full formulation – taking into account Eq. (2) – becomes:

FBFðkÞ ¼ Pmax � f ca p �
Z

ce �
c f

n
�

e f

n
cCO2

� V

� �
dt � F � Pmax;

8 k2 ðv; vþ TÞ (3)

The annual integrals calculated by Eq. (3) are given in nominal
prices, but they are converted to present values (PV), using an
appropriate constant interest rate in order to be comparable. Then,
they are summed up, thus resulting to an aggregate project NPV
which accounts for its entire operational life-time. The algebraic
sum of annual cash flow PVs is calculated for the years foreseen to
be the total operational life-time of each plant, using the following
Eq. (4):

NPVi;v ¼
XTþv

k¼v

FBFðkÞ � 1

ð1þ irÞk

" #
� CIi;ID (4)

The above procedure is carried out iteratively assuming
progressively advanced time of investment decision (ID time).
The time-step between iterations equals to 1 year and each
iteration is repeated for all fuel-plant combinations (biomass and
natural gas fired plants with or without CCS).

The investment costs [CIi;v] of a power plant type (i),
commissioned in the year (v), depend on technical advances
arising from long periods of cumulative experience on construction
of such power-production units. This fact is expressed by the
learning-curves methodology [26] which has also been adopted in
[17] and [2] and can be mathematically formulated as follows:

CIi;ID ¼ CIi;2009 �
Pcum;i;ID

Pcum;i;2009

� �log2 ½1�bi �
; 8 i (5)

The investment expenses of year 2009 are used as a reference
value, while curve fitting has been applied in order to construct a
continuous time relationship of global cumulative installed
capacities evolution [27]. As stated before, the optimal Investment
Decision time (ID), is an unknown to be found by the computational
procedure. Actually, biomass and NG-fired plants appear to have
similar construction (lead) times. They are usually commissioned
within 3 years of their construction initiation. The ID time denotes
the timing of investment decision, which is the starting point for
construction, setup and commissioning of the investment. There-
fore, it can take values in a range of 15-year time-period starting
from 2010 and extending to the year 2025. Hence, an additional
equation should provide a relationship between the ID time and the
time of setup and commissioning completion (v) which coincides
with the initiation of cash flow activity. Based on the above, the
required relationship is given by the following Eq. (6):

v ¼ IDþ 3 (6)

4.3. Selection of optimal investment option and time

The final matrix of results is split in 5 columns and 15 rows of
expected NPVs [E(NPV)]. Each column corresponds to the five
investigated options: (a and b) invest in local biomass with and
without a CCS system installed, (c and d) invest in NG with and
without a CCS system installed and (e) remain to the current status.
Each row corresponds to the [E(NPV)] produced by assuming
different ID times in the range (2010–2025). The matrix element
with the maximum NPV is the requested result; its column
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corresponds to the most interesting fuel and associated power-
production technology while its row corresponds to the optimal ID
time point (years ahead from today).

5. The computational procedure

The computational procedure applied for the solution of the
problem is based on the tasks described above, on the design of the
model. It can be summarised in the following steps:

Step 1. Determination of problem’s inputs and technological
details, such as: setup periods, lead time (construction),
operational life-time, basic investment and operational costs,
capacity factors, etc.
Step 2. Prediction of electricity selling price to the grid using the
GBM method.
Step 3. Prediction of CO2 allowance prices using a GBM SDE.
Step 4. Prediction of correlated fuel prices using the GBM
method and appropriate correlation of their historical data.
Step 5. Calculation of aggregate project NPV for any fuel-plant
combination and any ID time.
Step 6. Selection of the optimal project NPV as well as of the
optimal ID decision time.

5.1. The model’s input data (Step 1)

Inflation rate, interest rate and time periods of the study
constitute the basic inputs of the model. The time periods are split
in three discrete parts: (a) ID time, (b) construction commissioning
and setup time, and (c) operational life-time. In the present case
study, 15 (max), 3 and 32 years were allocated for these periods,
respectively. As has been stated before, the ID time may take values
in the range 1–15 years. The inflation rate is assumed to be 3%,
close to the current mean average of inflation in Greece, while the
interest rate is assumed to be 8% including the inflation rate and a
moderate technological risk. Another set of inputs necessary for
the model is related with the investigated technologies and
financial data. The entire field of technology related inputs needed
for the iterative computational procedure is presented in Table 1.

5.2. Prediction of electricity prices (Step 2)

Electricity – being a product with a rather inelastic behaviour –
does not usually present demand patterns severely influenced by
prices fluctuation except in rare circumstances. Its time-evolution
path usually follows the actual social needs. In an effort to reveal
such possible correlations and thus to obtain more accurate
forecasts of prices’ time-series, an additional forecasting was
necessary to be done: that of electricity demand. The historical
data of actual loads and System Marginal Prices (SMP) were
acquired by the Hellenic Transmission System’s Operator (HTSO
S.A.) [28]. It is noted that SMP data actually constitute the
payments realised by HTSO S.A. to conventional electricity
producers. The historical data were available on an hourly basis
for the time-period 2001–2008, but a mean daily average was
calculated and finally used. As stated in the description of the
mathematical model, an Euler type solver augmented by a Monte-

Carlo procedure has been used to produce multiple simulations of a
GBM type SDE for the years 2009–2059 and average them in order
to obtain a single valid solution. The volatile forecasts of SMPs can
be seen in Fig. 1 together with the nominal prices foreseen by the
Greek Law for renewable power producers.

The standard deviation for the historical data of SMPs has been
calculated equal to 20.8801 while its mean drift was 0.0166. A
correlation coefficient has been derived from historical data of
SMPs and loads using the Pearson’s formula, in order to produce
correlated stochastic differentials for the two variables. The
calculated coefficient (0.5402) indicates a moderate correlation.

5.3. CO2 allowance prices (Step 3)

The CO2 allowance prices contribute to the system’s expenses
and revenues as seen in Eq. (1). These prices have been simulated
using a GBM-type SDE with mean drift and standard deviation
estimations 0.0210 and 0.1400, respectively, derived from
allowance prices historical data (Point Carbon [29]). The forecasted
CO2 allowance prices can be seen in (Fig. 2):

5.4. Fuel prices (Step 4)

The historical data of natural gas prices [30] cover the time
period 2001–2008 and provide the necessary information about
the statistical parameters required by the GBM simulation (mean
drift, standard deviation). Concerning the biomass price of the
same period, the technique established in [10] was applied. With
this method, the Reverse Logistics costs of the entire supply-chain
are calculated via a Holistic Activity Based Costing (ABC)
procedure. A mean drift – equal to the inflation rate – is further
applied in order to reconstitute the biomass price evolution until
the year 2059. This was done by simulating the GBM type SDE
(Eq. (2*) of Appendix A). A mean solution was computed after 100
different trials within the frame of an iterative Monte-Carlo
simulation using correlated stochastic differentials as explained in
the description of the mathematical model. In an effort to identify
the correlation between the prices of cotton-stalk biomass and

Table 1
The input data for the computational model.

Power plant/fuel type Capital cost

(for 2009) (s/kW)

HHV

efficiency

CO2 emissions

(ton/MWhf)

Fixed costs

(s/kW/year)

Variable costs

(s/MWhel)

Learning

rate

Biomass/no CCS 1200 0.34 0 5.8 10.5 0.05

Biomass/CCS 1730 0.28 �0.200 6.5 13.65 0.05

NGCC/no CCS 600 0.51 0.240 2.6 2.3 0.15

NGCC/CCS 1190 0.44 0.024 4.3 3.8 0.15

Fig. 1. Electricity price forecasts (conventional energies) and regulation (renewable

energies).
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natural gas, their correlation coefficient is computed based on their
past observed prices and on past oil prices. The correlation
coefficients are presented in Table 2. A strong correlation between
NG and oil prices can be noticed while the correlation between oil
and biomass prices is weak.

The correlation coefficients are then used for future prediction
of fuel prices. The resulting fuel price evolution is presented in the
following graph (Fig. 3). It is emphasised that the fuel prices
include their mining and/or harvesting costs, their logistical costs
(transportation, handling and warehousing) as well as the costs for
their production or processing to their final form.

The previously analysed and processed forecasts are gathered in
an input file used for the next step which is the calculation of time-
sliding NPV integrals.

6. Results of the code (Steps 5 and 6)

The results of the model are presented in this paragraph. The
evolution path of NPVs as a function of ID time can be seen in Fig. 4

for each investigated technology. As stated before, in this basic
scenario, an interest rate of 8% has been assumed while the EU-ETS
is activated, meaning that there are no free CO2 allowances after
the year 2012.

The expected payback period for each power-production
technology is shown in Fig. 5.

In order to assess the impact of EU-ETS implementation, the
above graphs are recalculated assuming that the CO2 allowances

Fig. 2. CO2 allowance price forecasts.

Table 2
Stochastic differentials’ correlation coefficients of fuel prices extracted from

historical (NG-oil) and analytically computed (biomass) values.

Oil Natural gas Biomass

Oil 1 0.8395 �0.0645

Natural gas 0.8395 1 �0.511

Biomass �0.0645 �0.511 1

Fig. 3. Correlated fuel price forecasts.

Fig. 4. NPV of different technologies as a function of ID time (ir = 8%, EU-ETS).

Fig. 5. Payback period of different technologies as a function of ID time (ir = 8%, EU-

ETS).

Fig. 6. NPV of different technologies as a function of ID time (ir = 8%, no EU-ETS).
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are always free (their price is always equal to zero). In that case the
evolution path of the different investments (NPVs as a function of
ID time) is presented in Fig. 6 and the corresponding payback
periods are presented in Fig. 7.

A slight NPV decrease compared with the results of Fig. 4 is
noticed in all but biomass-fired plants, due to their neutral CO2

emissions.
The interest rate is a crucial parameter which greatly influences

the economical efficiency of an energy-related project. In order to
have an overview of investment decision modification due to
interest rate variations, the graph in Fig. 8 is constructed
presenting the expected NPVs for the different plants as a function
of ID time but now assuming an interest rate 4%. Some important
alterations on investment decisions can be identified comparing
Figs. 4 and 8. Low interest rates might encourage potential
investors to wait before actualising their business plans for almost
5 years, while – on the other hand – higher interest rates favor
immediate investment decisions.

In Fig. 9, the financial balance of incomes and expenses as well
as the cost breakdown are presented as a function of time. Nominal
prices are estimated for every year of the operational life-time, for
the basic scenario and the associated optimal ID time and
technology, so that the major cost contributors may be recognised.

Finally in Fig. 10, the NPV is split in its contributors, either
expenses or revenues, for the optimal technology (NGCC without
CCS), as a function of ID time. The amortised fuel costs are

identified as the most significant cost factor compared to CO2

expenses and other fixed and variable costs.

7. Discussion and conclusions

In this work a time-dependent model has been presented,
suitable for energy-related, private business strategies and
decision making. Stochastic forecasting of prices with GBM,
functional relationship of capital costs with time and integration
within a real options frame, constitute its basic methodological
structure. In the case study, the potential investors are in front of
important investment options, including fuel selection, and timing
for investment realisation. The conclusions of the study may be
summarised in the following points:

� The expected NPV of NGCC plants without CCS is estimated to be
higher, compared to the other types of power plants. The
biomass-fired plants without CCS, appear to have lower NPV but
not significantly higher than the other remaining technologies
(i.e. biomass/CCS and NGCC/CCS).
� The negative NPV differences due to the installation of CCS are

more significant on NGCC plants compared to the negative NPV
differences appeared on the biomass-fired systems due to their
respective capital and variable costs differences.
� Concerning an industrial user willing to invest on power

production, all the investigated technologies appear to be

Fig. 7. Payback period of different technologies as a function of ID time (ir = 8%, no

EU-ETS).

Fig. 8. NPV of different technologies as a function of ID time (ir = 4%, EU-ETS).

Fig. 9. Financial balance and cost breakdown for each year of operational life-time.

Fig. 10. NPV decomposition (NGCC, no CCS, ir = 8%, EU-ETS, optimal ID time, no

investment costs).
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financially promising (NPV > 0) compared to the AS-IS situation.
On the contrary, the NPV of remaining to the current status (i.e.
paying for grid electricity) is obviously always negative.
� The fuel expenses constitute a dominating cost-factor for the

NGCC plants while the costs due to the emissions trading are low
but not negligible. The remaining cost factors (fixed operational
costs, variable operational costs, etc.) are low for both plant types
thus being insignificant for potential cost-killing policy. It is
noted that the absolute values of revenues are significantly
higher than those of fuel expenses, and consequently they are
influenced more by higher interest rates.
� The risk of undertaking such a project is reflected on the assumed

interest rate. With the currently existing conditions in the Greek
Electricity market and assuming an interest rate of 8% (high
levels of uncertainty for the future), the decision for an
immediate investment on NGCC technology without CCS
(ID = 1) seems to be more interesting comparing to the option
to wait. However, if a lower interest rate is assumed (4%), waiting
before investing might prove to be more profitable. In that case,
the estimated optimal ID time is almost 5 years while the NPV
improvement is small but not negligible (4–5%) compared with
an immediate investment decision. This is a direct effect of the
electricity and fuel price volatile forecasts. As stated before,
higher interest rates tend to reduce the far future electricity price
forecasts, thus making future investments less promising for a
potential industrial user.
� The price of CO2 allowances used in the study (about 21 s/ton

CO2) does not seem to be able to promote the use of CCS
technologies without further subsidies.
� The EU-ETS may reduce the expected NPV by 15–20% in the cases

of NGCC without CCS and biomass/CCS, while the NGCC/CCS
plants are slightly affected. The biomass-fired plants without
CCS, obviously remain unaffected by EU-ETS activation due to
their neutral CO2 emissions.
� The influence on payback period follows a similar trend. The

typical payback period for NGCC plants is almost 4–6 years
assuming that the EU-ETS is inactive. With the assumption of EU-
ETS activation, the payback period may be increased at least by 1
year. The payback period of biomass-fired plants remains
unaffected by the implementation of EU-ETS.

From all the above it is concluded that a careful examination of
existing fiscal conditions is a prerequisite for the final investors
decision. Under the current conditions investing on either NG or
biomass seems to be a profitable business. However, Power Sector
is a rapidly changing business environment, severely influenced by
emerging technologies and fuels. These innovations seem to
spread a risk fear which usually discourages energy investments.
Moreover, the recent legal status modifications concerning
renewable energy and power sector deregulation may have a
direct effect in the near future of domestic electricity market.
Private business strategies and decision making should be in line
with these changes as well as with the concept of environmental
protection. Time-dependent investment analysis and ‘‘real
options’’ might become useful tools for energy project assessments
and further case studies may reveal interesting aspects on the
economy of sustainability.

Appendix A. The mathematical background for the forecasting
tool

Let us consider the following generic Wiener process given in
stochastic differential equation (SDE) formulation:

dXt ¼ Fðt;XtÞ dt þ Gðt;XtÞ dW t (1*)

where:

� X is a state vector of process variables (for example, fuel or
electricity prices) to simulate.
� W is a Brownian motion vector whose differential oscillates in a

range of values generated by normal distribution.
� F is a vector-valued drift-rate function.
� G is a matrix-valued diffusion-rate function.

The drift and diffusion rates, F and G, respectively, are general
functions of a real-valued scalar sample time t and state vector Xt.
Eq. (1*) is useful in implementing derived classes that impose
additional structure on the drift and diffusion-rate functions. The
derived class used in this study is the following:

GBM: The Geometric Brownian Motion Class whose general
equation is:

dXt ¼ mðtÞXt dt þ Dðt;XtÞVðtÞ dW t (2*)

where:

� Xt is a state vector of process variables.
� m(t) is the mean drift function derived from the historical data as

a mean average of fluctuations.
� D(t, Xt) is a diagonal matrix-valued function. Each diagonal

element of D is the corresponding element of the state vector
raised to the corresponding element of an exponent (a(t)), which
is a vector-valued function: Dðt;XaðtÞ

t Þ.
� V(t) is a matrix-valued volatility rate function.
� dW(t) is a Brownian motion vector (noise) differential which is

equal to e
ffiffiffiffiffi
dt
p

and e2N(0,1).
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