162 research outputs found

    Dynamic demand and mean-field games

    Get PDF
    Within the realm of smart buildings and smart cities, dynamic response management is playing an ever-increasing role thus attracting the attention of scientists from different disciplines. Dynamic demand response management involves a set of operations aiming at decentralizing the control of loads in large and complex power networks. Each single appliance is fully responsive and readjusts its energy demand to the overall network load. A main issue is related to mains frequency oscillations resulting from an unbalance between supply and demand. In a nutshell, this paper contributes to the topic by equipping each signal consumer with strategic insight. In particular, we highlight three main contributions and a few other minor contributions. First, we design a mean-field game for a population of thermostatically controlled loads (TCLs), study the mean-field equilibrium for the deterministic mean-field game and investigate on asymptotic stability for the microscopic dynamics. Second, we extend the analysis and design to uncertain models which involve both stochastic or deterministic disturbances. This leads to robust mean-field equilibrium strategies guaranteeing stochastic and worst-case stability, respectively. Minor contributions involve the use of stochastic control strategies rather than deterministic, and some numerical studies illustrating the efficacy of the proposed strategies

    Fast and Reliable Primary Frequency Reserves From Refrigerators with Decentralized Stochastic Control

    Get PDF
    Due to increasing shares of renewable energy sources, more frequency reserves are required to maintain power system stability. In this paper, we present a decentralized control scheme that allows a large aggregation of refrigerators to provide Primary Frequency Control (PFC) reserves to the grid based on local frequency measurements and without communication. The control is based on stochastic switching of refrigerators depending on the frequency deviation. We develop methods to account for typical lockout constraints of compressors and increased power consumption during the startup phase. In addition, we propose a procedure to dynamically reset the thermostat temperature limits in order to provide reliable PFC reserves, as well as a corrective temperature feedback loop to build robustness to biased frequency deviations. Furthermore, we introduce an additional randomization layer in the controller to account for thermostat resolution limitations, and finally, we modify the control design to account for refrigerator door openings. Extensive simulations with actual frequency signal data and with different aggregation sizes, load characteristics, and control parameters, demonstrate that the proposed controller outperforms a relevant state-of-the-art controller.Comment: 44 pages, 17 figures, 9 Tables, submitted to IEEE Transactions on Power System

    Congestion avoidance for recharging electric vehicles using smoothed particle hydrodynamics

    Get PDF
    In this paper, a novel approach for recharging electric vehicles (EVs) is proposed based on managing multiple discrete units of electric power flow, named energy demand particles (EDPs). Key similarities between EDPs and fluid particles (FPs) are established that allow the use of a smoothed particle hydrodynamics (SPH) method for scheduling the recharging times of EVs. It is shown, via simulation, that the scheduling procedure not only minimizes the variance of voltage drops in the secondary circuits, but it also can be used to implement a dynamic demand response and frequency control mechanism. The performance of the proposed scheduling procedure is also compared with alternative approaches recently published in the literature

    Natural Heterogeneity Prevents Synchronization of Fridges With Deterministic Frequency Control

    Get PDF
    Appliances that cycle on and off throughout the day, such as fridges, freezers, and air-conditioners can collectively provide second-by-second electricity supply-demand balancing known as frequency response. Previous studies have shown that deterministic temperature set-point control of a homogeneous population of such appliances can cause herding behavior with detrimental effects on the system. Here, we use computational modeling to establish the minimum population heterogeneity required to prevent herding problems without requiring centralized or stochastic control. We discover a linear relationship between the benefits that fridges can provide and their number. The impact on system benefits and on fridge temperatures of varying fridge frequency sensitivity is also explored, and a viable range for sensitivity (the control parameter) is proposed. Our approach involves simulating a large heterogeneous population of frequency-sensitive fridges using 12 months' GB system data from National Grid. We compare the historic frequency response from other response providers with their response in our fridge simulations to determine the benefits of the fridge population response. We find that a fridge population can offer a valuable demand-side response service to the electricity system operator, requiring neither the expensive infrastructure of centralized control nor the regular intervention of stochastic control for temperature cycle desynchronization

    Decentralized control of thermostatic loads for flexible demand response

    Get PDF
    Thermostatically controlled loads (TCLs), such as refrigerators, air-conditioners and space heaters, offer significant potential for short-term modulation of their aggregate power consumption. This ability can be used in principle to provide frequency response services, but controlling a multitude of devices to provide a measured collective response has proven to be challenging. Many controller implementations struggle to manage simultaneously the short-term response and the long-term payback, whereas others rely on a real-time command-and-control infrastructure to resolve this issue. In this paper, we propose a novel approach to the control of TCLs that allows for accurate modulation of the aggregate power consumption of a large collection of appliances through stochastic control. By construction, the control scheme is well suited for decentralized implementation, and allows each appliance to enforce strict temperature limits. We also present a particular implementation that results in analytically tractable solutions both for the global response and for the device-level control actions. Computer simulations demonstrate the ability of the controller to modulate the power consumption of a population of heterogeneous appliances according to a reference power profile. Finally, envelope constraints are established for the collective demand response flexibility of a heterogeneous set of TCLs

    Designing effective frequency response patterns for flexible thermostatic loads

    Get PDF

    Optimal Ensemble Control of Loads in Distribution Grids with Network Constraints

    Full text link
    Flexible loads, e.g. thermostatically controlled loads (TCLs), are technically feasible to participate in demand response (DR) programs. On the other hand, there is a number of challenges that need to be resolved before it can be implemented in practice en masse. First, individual TCLs must be aggregated and operated in sync to scale DR benefits. Second, the uncertainty of TCLs needs to be accounted for. Third, exercising the flexibility of TCLs needs to be coordinated with distribution system operations to avoid unnecessary power losses and compliance with power flow and voltage limits. This paper addresses these challenges. We propose a network-constrained, open-loop, stochastic optimal control formulation. The first part of this formulation represents ensembles of collocated TCLs modelled by an aggregated Markov Process (MP), where each MP state is associated with a given power consumption or production level. The second part extends MPs to a multi-period distribution power flow optimization. In this optimization, the control of TCL ensembles is regulated by transition probability matrices and physically enabled by local active and reactive power controls at TCL locations. The optimization is solved with a Spatio-Temporal Dual Decomposition (ST-D2) algorithm. The performance of the proposed formulation and algorithm is demonstrated on the IEEE 33-bus distribution model.Comment: 7 pages, 6 figures, accepted PSCC 201

    Benefits of demand-side response in providing frequency response service in the future GB power system

    Get PDF
    The demand for ancillary service is expected to increase significantly in the future Great Britain (GB) electricity system due to high penetration of wind. In particular, the need for frequency response, required to deal with sudden frequency drops following a loss of generator, will increase because of the limited inertia capability of wind plants. This paper quantifies the requirements for primary frequency response and analyses the benefits of frequency response provision from demand-side response (DSR). The results show dramatic changes in frequency response requirements driven by high penetration of wind. Case studies carried out by using an advanced stochastic generation scheduling model suggest that the provision of frequency response from DSR could greatly reduce the system operation cost, wind curtailment, and carbon emissions in the future GB system characterized by high penetration of wind. Furthermore, the results demonstrate that the benefit of DSR shows significant diurnal and seasonal variation, whereas an even more rapid (instant) delivery of frequency response from DSR could provide significant additional value. Our studies also indicate that the competing technologies to DSR, namely battery storage, and more flexible generation could potentially reduce its value by up to 35%, still leaving significant room to deploy DSR as frequency response provider

    Control for large scale demand response of thermostatic loads

    Get PDF
    • …
    corecore