3 research outputs found

    주파수 및 시간적 상관관계에 기반한 음향학적 에코 억제 기법

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 8. 김남수.In the past decades, a number of approaches have been dedicated to acoustic echo cancellation and suppression which reduce the negative effects of acoustic echo, namely the acoustic coupling between the loudspeaker and microphone in a room. In particular, the increasing use of full-duplex telecommunication systems has led to the requirement of faster and more reliable acoustic echo cancellation algorithms. The solutions have been based on adaptive filters, but the length of these filters has to be long enough to consider most of the echo signal and linear filtering in these algorithms may be limited to remove the echo signal in various environments. In this thesis, a novel stereophonic acoustic echo suppression (SAES) technique based on spectral and temporal correlations is proposed in the short-time Fourier transform (STFT) domain. Unlike traditional stereophonic acoustic echo cancellation, the proposed algorithm estimates the echo spectra in the STFT domain and uses a Wiener filter to suppress echo without performing any explicit double-talk detection. The proposed approach takes account of interdependencies among components in adjacent time frames and frequency bins, which enables more accurate estimation of the echo signals. Due to the limitations of power amplifiers or loudspeakers, the echo signals captured in the microphones are not in a linear relationship with the far-end signals even when the echo path is perfectly linear. The nonlinear components of the echo cannot be successfully removed by a linear acoustic echo canceller. The remaining echo components in the output of acoustic echo suppression (AES) can be further suppressed by applying residual echo suppression (RES) algorithms. In this thesis, we propose an optimal RES gain estimation based on deep neural network (DNN) exploiting both the far-end and the AES output signals in all frequency bins. A DNN structure is introduced as a regression function representing the complex nonlinear mapping from these signals to the optimal RES gain. Because of the capability of the DNN, the spectro-temporal correlations in the full-band can be considered while finding the nonlinear function. The proposed method does not require any explicit double-talk detectors to deal with single-talk and double-talk situations. One of the well-known approaches for nonlinear acoustic echo cancellation is an adaptive Volterra filtering and various algorithms based on the Volterra filter were proposed to describe the characteristics of nonlinear echo and showed the better performance than the conventional linear filtering. However, the performance might be not satisfied since these algorithms could not consider the full correlation for the nonlinear relationship between the input signal and far-end signal in time-frequency domain. In this thesis, we propose a novel DNN-based approach for nonlinear acoustic echo suppression (NAES), extending the proposed RES algorithm. Instead of estimating the residual gain for suppressing the nonlinear echo components, the proposed algorithm straightforwardly recovers the near-end speech signal through the direct gain estimation obtained from DNN frameworks on the input and far-end signal. For echo aware training, a priori and a posteriori signal-to-echo ratio (SER) are introduced as additional inputs of the DNN for tracking the change of the echo signal. In addition, the multi-task learning (MTL) to the DNN-based NAES is combined to the DNN incorporating echo aware training for robustness. In the proposed system, an additional task of double-talk detection is jointly trained with the primary task of the gain estimation for NAES. The DNN can learn the good representations which can suppress more in single-talk periods and improve the gain estimates in double-talk periods through the MTL framework. Besides, the proposed NAES using echo aware training and MTL with double-talk detection makes the DNN be more robust in various conditions. The proposed techniques show significantly better performance than the conventional AES methods in both single- and double-talk periods. As a pre-processing of various applications such as speech recognition and speech enhancement, these approaches can help to transmit the clean speech and provide an acceptable communication in full-duplex real environments.Chapter 1 Introduction 1 1.1 Background 1 1.2 Scope of thesis 3 Chapter 2 Conventional Approaches for Acoustic Echo Suppression 7 2.1 Single Channel Acoustic Echo Cancellation and Suppression 8 2.1.1 Single Channel Acoustic Echo Cancellation 8 2.1.2 Adaptive Filters for Acoustic Echo Cancellation 10 2.1.3 Acoustic Echo Suppression Based on Spectral Modication 11 2.2 Residual Echo Suppression 13 2.2.1 Spectral Feature-based Nonlinear Residual Echo Suppression 15 2.3 Stereophonic Acoustic Echo Cancellation 17 2.4 Wiener Filtering for Stereophonic Acoustic Echo Suppression 20 Chapter 3 Stereophonic Acoustic Echo Suppression Incorporating Spectro-Temporal Correlations 25 3.1 Introduction 25 3.2 Linear Time-Invariant Systems in the STFT Domain with Crossband Filtering 26 3.3 Enhanced SAES (ESAES) Utilizing Spectro-Temporal Correlations 29 3.3.1 Problem Formulation 31 3.3.2 Estimation of Extended PSD Matrices, Echo Spectra, and Gain Function 34 3.3.3 Complexity of the Proposed ESAES Algorithm 36 3.4 Experimental Results 37 3.5 Summary 41 Chapter 4 Nonlinear Residual Echo Suppression Based on Deep Neural Network 43 4.1 Introduction 43 4.2 A Brief Review on RES 45 4.3 Deep Neural Networks 46 4.4 Nonlinear RES using Deep Neural Network 49 4.5 Experimental Results 52 4.5.1 Combination with Stereophonic Acoustic Echo Suppression 59 4.6 Summary 61 Chapter 5 Enhanced Deep Learning Frameworks for Nonlinear Acoustic Echo Suppression 69 5.1 Introduction 69 5.2 DNN-based Nonlinear Acoustic Echo Suppression using Echo Aware Training 72 5.3 Multi-Task Learning for NAES 75 5.4 Experimental Results 78 5.5 Summary 82 Chapter 6 Conclusions 89 Bibliography 91 요약 101Docto

    An investigation of the utility of monaural sound source separation via nonnegative matrix factorization applied to acoustic echo and reverberation mitigation for hands-free telephony

    Get PDF
    In this thesis we investigate the applicability and utility of Monaural Sound Source Separation (MSSS) via Nonnegative Matrix Factorization (NMF) for various problems related to audio for hands-free telephony. We first investigate MSSS via NMF as an alternative acoustic echo reduction approach to existing approaches such as Acoustic Echo Cancellation (AEC). To this end, we present the single-channel acoustic echo problem as an MSSS problem, in which the objective is to extract the users signal from a mixture also containing acoustic echo and noise. To perform separation, NMF is used to decompose the near-end microphone signal onto the union of two nonnegative bases in the magnitude Short Time Fourier Transform domain. One of these bases is for the spectral energy of the acoustic echo signal, and is formed from the in- coming far-end user’s speech, while the other basis is for the spectral energy of the near-end speaker, and is trained with speech data a priori. In comparison to AEC, the speaker extraction approach obviates Double-Talk Detection (DTD), and is demonstrated to attain its maximal echo mitigation performance immediately upon initiation and to maintain that performance during and after room changes for similar computational requirements. Speaker extraction is also shown to introduce distortion of the near-end speech signal during double-talk, which is quantified by means of a speech distortion measure and compared to that of AEC. Subsequently, we address Double-Talk Detection (DTD) for block-based AEC algorithms. We propose a novel block-based DTD algorithm that uses the available signals and the estimate of the echo signal that is produced by NMF-based speaker extraction to compute a suitably normalized correlation-based decision variable, which is compared to a fixed threshold to decide on doubletalk. Using a standard evaluation technique, the proposed algorithm is shown to have comparable detection performance to an existing conventional block-based DTD algorithm. It is also demonstrated to inherit the room change insensitivity of speaker extraction, with the proposed DTD algorithm generating minimal false doubletalk indications upon initiation and in response to room changes in comparison to the existing conventional DTD. We also show that this property allows its paired AEC to converge at a rate close to the optimum. Another focus of this thesis is the problem of inverting a single measurement of a non- minimum phase Room Impulse Response (RIR). We describe the process by which percep- tually detrimental all-pass phase distortion arises in reverberant speech filtered by the inverse of the minimum phase component of the RIR; in short, such distortion arises from inverting the magnitude response of the high-Q maximum phase zeros of the RIR. We then propose two novel partial inversion schemes that precisely mitigate this distortion. One of these schemes employs NMF-based MSSS to separate the all-pass phase distortion from the target speech in the magnitude STFT domain, while the other approach modifies the inverse minimum phase filter such that the magnitude response of the maximum phase zeros of the RIR is not fully compensated. Subjective listening tests reveal that the proposed schemes generally produce better quality output speech than a comparable inversion technique

    An investigation of the utility of monaural sound source separation via nonnegative matrix factorization applied to acoustic echo and reverberation mitigation for hands-free telephony

    Get PDF
    In this thesis we investigate the applicability and utility of Monaural Sound Source Separation (MSSS) via Nonnegative Matrix Factorization (NMF) for various problems related to audio for hands-free telephony. We first investigate MSSS via NMF as an alternative acoustic echo reduction approach to existing approaches such as Acoustic Echo Cancellation (AEC). To this end, we present the single-channel acoustic echo problem as an MSSS problem, in which the objective is to extract the users signal from a mixture also containing acoustic echo and noise. To perform separation, NMF is used to decompose the near-end microphone signal onto the union of two nonnegative bases in the magnitude Short Time Fourier Transform domain. One of these bases is for the spectral energy of the acoustic echo signal, and is formed from the in- coming far-end user’s speech, while the other basis is for the spectral energy of the near-end speaker, and is trained with speech data a priori. In comparison to AEC, the speaker extraction approach obviates Double-Talk Detection (DTD), and is demonstrated to attain its maximal echo mitigation performance immediately upon initiation and to maintain that performance during and after room changes for similar computational requirements. Speaker extraction is also shown to introduce distortion of the near-end speech signal during double-talk, which is quantified by means of a speech distortion measure and compared to that of AEC. Subsequently, we address Double-Talk Detection (DTD) for block-based AEC algorithms. We propose a novel block-based DTD algorithm that uses the available signals and the estimate of the echo signal that is produced by NMF-based speaker extraction to compute a suitably normalized correlation-based decision variable, which is compared to a fixed threshold to decide on doubletalk. Using a standard evaluation technique, the proposed algorithm is shown to have comparable detection performance to an existing conventional block-based DTD algorithm. It is also demonstrated to inherit the room change insensitivity of speaker extraction, with the proposed DTD algorithm generating minimal false doubletalk indications upon initiation and in response to room changes in comparison to the existing conventional DTD. We also show that this property allows its paired AEC to converge at a rate close to the optimum. Another focus of this thesis is the problem of inverting a single measurement of a non- minimum phase Room Impulse Response (RIR). We describe the process by which percep- tually detrimental all-pass phase distortion arises in reverberant speech filtered by the inverse of the minimum phase component of the RIR; in short, such distortion arises from inverting the magnitude response of the high-Q maximum phase zeros of the RIR. We then propose two novel partial inversion schemes that precisely mitigate this distortion. One of these schemes employs NMF-based MSSS to separate the all-pass phase distortion from the target speech in the magnitude STFT domain, while the other approach modifies the inverse minimum phase filter such that the magnitude response of the maximum phase zeros of the RIR is not fully compensated. Subjective listening tests reveal that the proposed schemes generally produce better quality output speech than a comparable inversion technique
    corecore