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Abstract

In the past decades, a number of approaches have been dedicated to acoustic

echo cancellation and suppression which reduce the negative effects of acoustic echo,

namely the acoustic coupling between the loudspeaker and microphone in a room.

In particular, the increasing use of full-duplex telecommunication systems has led

to the requirement of faster and more reliable acoustic echo cancellation algorithms.

The solutions have been based on adaptive filters, but the length of these filters has

to be long enough to consider most of the echo signal and linear filtering in these

algorithms may be limited to remove the echo signal in various environments.

In this thesis, a novel stereophonic acoustic echo suppression (SAES) technique

based on spectral and temporal correlations is proposed in the short-time Fourier

transform (STFT) domain. Unlike traditional stereophonic acoustic echo cancella-

tion, the proposed algorithm estimates the echo spectra in the STFT domain and

uses a Wiener filter to suppress echo without performing any explicit double-talk

detection. The proposed approach takes account of interdependencies among com-

ponents in adjacent time frames and frequency bins, which enables more accurate

estimation of the echo signals.

Due to the limitations of power amplifiers or loudspeakers, the echo signals cap-

tured in the microphones are not in a linear relationship with the far-end signals
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even when the echo path is perfectly linear. The nonlinear components of the echo

cannot be successfully removed by a linear acoustic echo canceller. The remaining

echo components in the output of acoustic echo suppression (AES) can be further

suppressed by applying residual echo suppression (RES) algorithms. In this thesis,

we propose an optimal RES gain estimation based on deep neural network (DNN)

exploiting both the far-end and the AES output signals in all frequency bins. A DNN

structure is introduced as a regression function representing the complex nonlinear

mapping from these signals to the optimal RES gain. Because of the capability of

the DNN, the spectro-temporal correlations in the full-band can be considered while

finding the nonlinear function. The proposed method does not require any explicit

double-talk detectors to deal with single-talk and double-talk situations.

One of the well-known approaches for nonlinear acoustic echo cancellation is an

adaptive Volterra filtering and various algorithms based on the Volterra filter were

proposed to describe the characteristics of nonlinear echo and showed the better

performance than the conventional linear filtering. However, the performance might

be not satisfied since these algorithms could not consider the full correlation for the

nonlinear relationship between the input signal and far-end signal in time-frequency

domain. In this thesis, we propose a novel DNN-based approach for nonlinear acous-

tic echo suppression (NAES), extending the proposed RES algorithm. Instead of

estimating the residual gain for suppressing the nonlinear echo components, the

proposed algorithm straightforwardly recovers the near-end speech signal through

the direct gain estimation obtained from DNN frameworks on the input and far-

end signal. For echo aware training, a priori and a posteriori signal-to-echo ratio

(SER) are introduced as additional inputs of the DNN for tracking the change of the

echo signal. In addition, the multi-task learning (MTL) to the DNN-based NAES
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is combined to the DNN incorporating echo aware training for robustness. In the

proposed system, an additional task of double-talk detection is jointly trained with

the primary task of the gain estimation for NAES. The DNN can learn the good

representations which can suppress more in single-talk periods and improve the gain

estimates in double-talk periods through the MTL framework. Besides, the pro-

posed NAES using echo aware training and MTL with double-talk detection makes

the DNN be more robust in various conditions.

The proposed techniques show significantly better performance than the conven-

tional AES methods in both single- and double-talk periods. As a pre-processing

of various applications such as speech recognition and speech enhancement, these

approaches can help to transmit the clean speech and provide an acceptable com-

munication in full-duplex real environments.

Keywords: Acoustic echo cancellation, acoustic echo suppression, signal-to-echo

ratio, spectro-temporal correlations, stereophonic acoustic echo suppression,

residual echo suppression, nonlinear echo, deep neural networks, optimal gain

regression, adaptive filtering, nonlinear acoustic echo suppression, echo aware

training, multi-task learning
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Chapter 1

Introduction

1.1 Background

In full-duplex hands-free telecommunication systems such as mobile phones,

speakerphones, and teleconferencing system, acoustic echo is easily generated from

the acoustic coupling between a loudspeaker and a microphone. Since even a small

acoustic echo picked up by the microphone in a receiving room may be very annoy-

ing and significantly deteriorate the quality of speech signal, various algorithms for

acoustic echo cancellation (AEC) or suppression (AES) are required to remove the

echo components and overcome serious conversation trouble. In the last decades, a

number of algorithms have been proposed to solve the acoustic echo problem and

produced some successful results in telecommunication systems [1]–[5].

Traditionally, single channel AEC has been achieved by identifying the echo path

with respect to room environment and the positions of the microphone and the loud-

speaker and deducting the echo estimates from the input signal. This process can

be viewed as a system identification and the echo path can be generally modeled as

1



a finite impulse response filter. The solutions for AEC mostly are based on adaptive

filters which are the well-known approaches such as normalized least mean square,

recursive least squares, affine projection and so on [6]. For the reasonable perfor-

mance of the acoustic echo cancellation algorithms, the length of the adaptive filters

should be long enough to consider most of the echo signal. However, these long filters

demand the computational complexity of the algorithms, so the modified techniques

in the time or frequency domain have been introduced for fast computation [6].

As an alternative, AES algorithms based on speech enhancement framework like

spectral modification or Wiener filtering have been researched to solve the echo

issue [7]–[11]. These approaches can help to enhance the perceptual quality of the

near-end speech without post-processing for suppressing residual echo and may be

robust to echo path changes. Additionally, these techniques may be computationally

more efficient than the AEC methods based on adaptive filters.

For spatial sound reproduction, the multi-channel AEC has been also researched

over the last decade and most of the traditional stereophonic AEC algorithms are

based on an adaptive filters for tracking several echo paths [12]–[14]. However, be-

cause of the strong cross-correlation between the stereo signals, these approaches

require various de-correlation pre-processes which demand substantial complexity

and cause distortion of the reproduced signal [4], [12]. To avoid the disadvantages

of the de-correlation methods, a stereophonic AES algorithms was presented re-

cently [15]. This method estimates echo spectra and utilizes them to obtain a priori

and a posteriori signal-to-echo ratio (SER) information which are exploited by the

single channel AES methods.

Although AEC or AES algorithms with linear filtering have been proven to re-

move echo successfully, a certain amount of residual echo remains at the output of
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these methods possibly due to the inherent nonlinearity of the loudspeakers and

power amplifiers, nonlinear acoustic transfer function of the echo path, or imperfec-

tion of the algorithms. First, to alleviate the nonlinearity in the output of AEC or

AES, several residual echo suppression (RES) methods have been introduced. The

authors in [9] and [16] proposed an RES gain function based on the SER estimated

in a decision-directed manner [17]. Recently, RES based on artificial neural network

(ANN) was proposed to model the mapping from the far-end to the residual echo

signal [18]. Second, for direct nonlinear AEC or AES without post-filtering, the

adaptive Volterra filters have been widely used because the filter structure can be

viewed as a generalization of linear adaptive filters [19]–[25]. Also, other approaches

based on the tap-delayed neural networks (TDNN) [26], kernel modification in AP

algorithm [27] were proposed to attenuate the nonlinear echo.

1.2 Scope of thesis

In this thesis, we propose three approaches incorporating spectro-temporal cor-

relations for acoustic echo suppression.

First, we propose an enhanced stereophonic AES (SAES) algorithm based on

spectral and temporal correlations among adjacent time frames and frequency bins

to improve the echo estimation performance of the conventional SAES method. Since

linear systems can be accurately represented by cross-band filtering in the short-time

Fourier transform (STFT) domain. The augmented vectors considering the continu-

ity in the time-frequency domain are introduced in order to estimate the stereo echo

more precisely, and calculate the extended power spectral density (PSD) matrices

and cross-PSD vectors combining adjacent components in the STFT domain. In
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various simulated conditions, experimental results showed better performances than

that of the conventional SAES technique.

Second, a new residual echo suppression using deep neural networks (DNNs) is

proposed in the single channel case. The DNN system estimates the optimal RES

gain based on both the far-end and the output signals of AES in all frequency

bins. We expect that the architecture can accommodate to model a nonlinear re-

gression function from these signals to optimal RES gain based on DNN training

using multi-condition data even though the room impulse responses (RIRs) used in

the training do not match the RIRs for the test. The proposed system can consider

spectro-temporal correlations which may come from harmonic distortion, insufficient

frequency resolution or nonlinear echo path without use of any explicit double-talk

detectors since the training data include both of the situations. The overall results

obtained in matched and mismatched conditions for various RIRs, SER, clipping

type, and level of nonlinearity in loudspeaker show that the proposed RES out-

performs the conventional ANN-based RES method in terms of various objective

measures.

Finally, extending the DNN-based RES technique, we propose a novel approach

in DNN framework for nonlinear acoustic echo suppression (NAES). The proposed

algorithm tries to directly recover the near-end speech signal by applying the optimal

gain estimation based on DNNs. However, the structures have not dynamic, but fixed

networks, so it may be impossible to track the nonlinear echo signal effectively in

the various environments or room impulse responses (RIRs) compared to adaptive

filtering. In order to overcome the issue, we use the echo information such as a priori

and a posteriori signal-to-echo ratio (SER) as additional inputs of the DNN. These

SER features may have appropriate information for tracking the change of the echo
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signal. This is called echo aware training. Furthermore, we introduce the multi-task

learning (MTL) to the DNN-based NAES incorporating echo aware training for

robust NAES. In the proposed technique, the primary task of the gain estimation

for NAES is jointly trained with an additional task of double-talk detection. The

network can learn the good representations which can suppress more in single-talk

periods and improve the gain estimates in double-talk periods through the double-

talk detection task. Therefore, the proposed method makes the DNN be more robust

in various conditions. Experimental results evaluated under real environments show

that the proposed method is superior to the conventional one, especially in double-

talk situations.

The rest of the thesis is organized as follows: Conventional AEC and AES ap-

proaches are briefly reviewed in Chapter 2. In Chapter 3, a novel stereophonic AES

algorithm incorporating spectro-temporal correlations is proposed in the STFT do-

main. The correlation between adjacent time frames and frequency bins is helpful to

suppress the echo signals and to preserve the near-end speech effectively. Chapter 4

proposes a new residual echo suppression based on deep neural networks. The DNN

is employed to find the complex regression function among the optimal RES gain,

the AES output, and the far-end signal in nonlinear environments which are orig-

inated from cheap loudspeakers and power amplifiers. In Chapter 5, a DNN-based

nonlinear acoustic echo suppression using echo aware training and multi-task learn-

ing is proposed for effective nonlinear echo suppression. In views of tracking the echo

and robustness to various conditions, this approach can achieve good performance.

Finally, we conclude this dissertation in Chapter 6.
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Chapter 2

Conventional Approaches for

Acoustic Echo Suppression

In the last few decades, many conventional approaches have been dedicated to

acoustic echo cancellation and suppression which reduce the negative effects of acous-

tic echo, namely the acoustic coupling between the loudspeaker and microphone in

a room. In particular, the increasing use of teleconferencing systems has led to the

requirement of faster and more reliable acoustic echo cancellation algorithms. In

the chapter, a few conventional approaches for acoustic echo suppression are briefly

introduced. First, classical single channel acoustic echo cancellation based on adap-

tive filters and acoustic echo suppression using speech enhancement techniques are

reviewed. Second, stereophonic acoustic echo cancellation in a full-duplex stereo-

phonic system for multichannel acoustic echo cancellation is introduced. Lastly, the

nonlinear residual echo suppression technique based on artificial neural network is

presented. The remarkable studies in this chapter may be helpful to understand the

details in the following chapters of the thesis.
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Figure 2.1: Schematic diagram of an adaptive acoustic echo canceller.

2.1 Single Channel Acoustic Echo Cancellation and Sup-

pression

2.1.1 Single Channel Acoustic Echo Cancellation

In full-duplex hands-free telecommunication systems, single channel acoustic

echo cancellation (AEC) and suppression have been researched to eliminate the

undesired acoustic echo, which is the coupling between a loudspeaker and a micro-

phone [1]–[5]. Historically, the echo cancellation process is achieved by identifying

the echo path and subtracting an estimate of the echo signal from the microphone

signal. In Fig. 2.1, a typical AEC is represented. The far-end signal x(n) which is

called the reference signal is played in a receiving room and the echo path generated

from the signal can be modeled as a finite impulse response (FIR) filter. The echo
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signal adds to the microphone signal y(n) together with the near-end speech s(n).

Thus, the microphone signal y(n) can be modeled as

y(n) = hTx(n) + s(n) (2.1)

where

x(n) = [x(n), x(n− 1), ..., x(n−N + 1)]T

h = [h0, h1, ..., hN−1]T

N is the length of the echo path impulse response, and T denotes the transpose

operation. To remove the echo signal, the echo estimate is calculated by identifying

the coefficients of an FIR filter,

ĥ = [ĥ0, ĥ1, ..., ĥL−1]T . (2.2)

The error signal e(n) can be yield by subtracting the echo estimate from the micro-

phone signal,

e(n) = y(n)− ŷ(n)

= [h− ĥ]Tx(n) + s(n). (2.3)

For an optimal error criterion, the mean square error (MSE) can be used as follows,

E{e2(n)} = E{[(h− ĥ)Tx(n)]2}+ E{s2(n)} (2.4)

where E{·} denotes the expectation operation and the echo signal and the near-

end speech signal are assumted to be uncorrelated. In other words, E{s2(n)} is not

affected by estimating the echo path. Thus, minimizing the MSE criterion means

that E{[(h− ĥ)Tx(n)]2} is minimized and it is the objective of AEC to suppress the

echo.

9



2.1.2 Adaptive Filters for Acoustic Echo Cancellation

In order to identify the optimum echo path, a number of adaptive techniques

have been already addressed. Mostly, well-known approaches are based on normal-

ized least mean square (NLMS), recursive least squares (RLS), affine projection

(AP), and so on [6]. The invention of the least mean square (LMS) algorithm can be

seen as the most crucial development for adaptive filtering. The potential of the LMS

algorithm for acoustic echo cancellation and suppression was recognized for several

researches. However, compared with line echoes on long distance transmission lines,

suppressing acoustic echoes requires advanced adaptive filters which are extremely

demanding with respect to signal processing power. In the past decades, many ex-

periments and simulations affirmed that the weakness of the LMS algorithm with

respect to correlated signals like speech. Although several modified LMS algorithms

in the time and frequency domain were proposed for improving the performance

and efficiency, these results included a certain amount of residual echo. In contrast

to LMS algorithm, the recursive least squares (RLS) algorithms for acoustic echo

processing can handle correlated signals very well since it has a built in decorrela-

tion facility. However, this needs the inversion of the short-term correlation matrix

of the input signal. Specially, the matrix may become singular by the characteris-

tics of the input signal or the estimation procedure. As a result, the RLS algorithm

frequently becomes instable for echo processing. To stabilize the RLS algorithm, it

may be necessary to revise the technique with a long memory, but this might cause

the tracking problem when the system to be identified changes. The affine projec-

tion (AP) algorithm [28] can provide a compromise method between the LMS and

RLS algorithms. Like the RLS algorithm, the AP method also requires the matrix
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inversion, but its numerical complexity is lower than that of the RLS algorithm and

the convergence speed almost reaches that of the RLS processing for speech signal.

When the signal-to-noise ratio (SNR) is high and the near-end speech is ab-

sent, the estimated echo path coefficients can converge and the echo is suppressed

well. However, when the near-end speech is active in the echo process, the adap-

tive FIR filter can be diverged by the presence of the near-end signal. To alleviate

this problem, the process of double-talk detection is needed [5], [29], [30]. Whenever

double-talk periods are detected, the echo process for estimating the echo path is

stopped and the filter coefficients are not updated. The double-talk detection based

on normalized correlation coefficients (NCCs) is the most well-known approach to

find the double-talk intervals [29].

2.1.3 Acoustic Echo Suppression Based on Spectral Modification

To achieve the reasonable performance of the echo canceller, the length of the

adaptive filter should be long enough for considering most of the echo. However,

the long filters cause that the computational cost is very high and implementing

the filter in the frequency domain can reduce the complexity compared to that in

the time domain. Instead of estimating the echo path directly, acoustic echo sup-

pression (AES) based on speech enhancement techniques like spectral modification

and Wiener filtering has been developed to reduce the echo effect [7]–[11]. AES ap-

proaches are easily incorporated and can enhance the perceptual speech quality. In

addition, mostly, the AES process may be robust to echo path changes and operate

well without post-processing for suppressing residual echo. If necessary, the AES

and RES methods can be easily combined. Lastly, AES algorithms may be com-

putationally more efficient than the conventional AEC methods based on adaptive
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filtering.

The signal model given in 2.1 can be written in a vector form in the short-time

Fourier transform (STFT) as

Y (k) = U(k) + S(k) (2.5)

where U(k) is the result after taking STFT on the echo signal u(n) = hTx. The

echo cancellation can be seen as an estimation problem to calculate S(k) from the

microphone signal Y (k). By obtaining the estimate of U(K), the near-end signal

S(K) can be recovered. Thus, this problem is equivalent to the design of two signal

estimators which are the spectral magnitude and the phase component. Fortunately,

it has been proven that the relationship between the phase distortion and human

perception is more insensitive than expected [17], [31], [32]. The phase component

of the microphone signal can be used as an estimate of the echo signal for echo

suppression. This serves as the basis for the echo suppression. In this framework,

given Y (k), |S(k)| is estimated using spectral modification [11]. It is assumed that

the microphone and the echo signals are uncorrelated. Based on this assumption, the

instantaneous power spectrum of the microphone signal U(k) can be approximated

as follows,

|Y (k)|2 ≈ |U(k)|2 + |S(k)|2. (2.6)

To recover the near-end signal, |S(K)|2 can be estimated by subtracting |U(K)2|

from |Y (k)|2, and the corresponding spectral magnitude of the near-end speech is
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calculated as

|S(k)| =
√
| ˆS(k)|2 (2.7)

=

[
|Y (k)|2 − |Û(k)|2

|Y (k)|2

]1/2

(2.8)

= G(k)|Y (k)| (2.9)

whereG(k) is called a gain filter. If necessary, additional parameters can be combined

to control the amount of echo in case it is under- or over-estimated. It has been widely

adopted for the purpose of additive noise suppression and speech enhancement. This

framework removes the echo in the time-frequency domain on a frame-by-frame basis.

Finally, the estimated near-end speech or suppressed signal is generated by applying

the overlap-add method with inverse STFT. However, the spectral modification often

causes the musical noise which makes annoying phenomenon due to the isolated

spectral peaks resulting from the nonlinear gain estimation.

2.2 Residual Echo Suppression

Acoustic echo cancellation (AEC) or suppression (AES) is a technique to reduce

the echo originated from acoustic coupling between loudspeakers and microphones

[7], [11], [33], [34]. Although there have been many techniques which are prove to

suppress the echo successfully, there still exists some amount of residual echo at the

outputs of these methods. One of the reasons for which the AEC or AES suffer is

that the echo signal is not a linear function of the far-end digital signal even when

the echo path is perfectly linear. The power amplifiers and loudspeakers, especially

cheap and small ones, can be the sources of this nonlinearity. To overcome this

problem, several residual echo suppression (RES) filters have been applied to the
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Figure 2.2: Schematic diagram of the stereophonic acoustic echo cancellation.

output of the AEC or AES to suppress remaining echo. The authors in [9] and [16]

proposed RES methods to estimate the signal-to-echo ratio (SER) and then apply

Wiener filters or spectral subtraction in the frequency domain. In [35], subband

filtering based on the spectral subtraction was combined with a truncated Taylor

series expansion of acoustic echo path for the estimation of power spectral density

of the echo.

A single-channel AES system with a post filter is depicted in Figure 2.2. The far-

end signal x(t) at time index t is generated by the source signal through the acoustic

impulse response in the transmission room. Let y(t) be the input signal including

near-end speech s(t) in the receiving room and Y (n, k) is the short-time Fourier

Transform (STFT) coefficient of y(t) for k-th frequency bin at the n-th frame. The

spectral gain function to suppress the echo, G(n, k), is obtained from the Wiener

filtering or spectral subtraction in each frequency bin. However, due to limitations

of linear echo modeling, the echo component may still remain in the output of

AES including a considerable amount of nonlinear echo degrading the quality of the
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near-end speech. To improve the output of AES, additional nonlinear residual echo

suppression (RES) filter can be applied to the remaining signal. Using the residual

echo suppression gain Gres(n, k), the final estimated speech in the frequency domain,

Ŝ(n, k) is given by,

Ŝ(n, k) = {G(n, k) ·Gres(n, k)}Y (n, k). (2.10)

When the power amplifiers and loudspeakers introduce severe nonlinearity, it is very

important to calculate Ĝres(n, k) accurately in accordance with the nonlinearity of

residual echo.

2.2.1 Spectral Feature-based Nonlinear Residual Echo Suppression

Recently, for the estimation of the residual echo magnitude spectrum in the

nonlinear environment, a RES algorithm was proposed using artificial neural net-

works (ANNs) [18]. Due to the computational complexity of the physical processes

leading to distortion artifacts, the approach using the spectral features from the

far-end signal was attempted instead of modeling RES directly. Thus, by training

a multiple-input regression model and realizing as ANNs, the RES processing is

achieved. The MMSE-optimal suppression gain Gres can be estimated based on the

estimated magnitude spectrum of the residual echo u(t) = y(t)− ŷ(t) and the AEC

or AES output magnitude |S̃(n, k)|,

Gres(n, k) = max

(
Gmin, 1− µ

|Û(n, k)|2

|S̃(n, k)|2

)
, (2.11)

where µ is the overestimation factor and Gmin is the mininum gain. Thus, this gain

estimation is achieved in the Wiener filter framework.

In Fig. 2.3, an artificial neural network based on spectral features extracted from

the far-end signal magnitude spectrum in the individual frequency bin is illustrated.
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Figure 2.3: An ANN structure for spectral feature-based nonlinear residual echo

suppression

This structure consists of an input layer, two hidden layers and an output layer. Each

hidden layer node represents a weighted sum of the hidden layers outputs and bias

values. For generating the feature, a feature extraction function is used as follows,

f(|X(n, k)|) =
1

k/2

k/2∑
n=1

|X(n, k)|. (2.12)

This feature is the average over all subbands up to half of the current subband k, mo-

tivated by the observation that nonlinear components in subband k are likely to gen-

erate from input magnitudes in subbands k/2 and less if they represent higher-order

harmonics. This model can be thought as a generalization of the linear relationship

between the reference signal and the residual echo magnitude, and the sparse cou-

pling signal, which can be made by using the magnitudes of other subbands as input

features. However, the training of a feedforward network is a non-convex optimiza-

tion problem, so an additional online adaptation is needed to be feasible estimation.

The initial residual echo magnitude estimate |Û∗(n, k)| from the offline-trained net-
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work, a scalar factor a(n, k) is adopted in the online processing,

|Û(n, k)| = a(n, k)|Û∗(n, k)|. (2.13)

The assumption behind this combination is that the nonlinear characteristics such

as the ratio between the linear and the nonlinear components per each frequency

band are not strongly dependent on the acoustic environment. Thus, the effect of

time-varying acoustic characteristics can be modeled by the adaptive filtering like

LMS algorithm [6]. This can be operated by estimating the weights in single-talk

periods using the adaptive update.

2.3 Stereophonic Acoustic Echo Cancellation

In the last decades, AEC on a single full-duplex audio channel was the major

research topic to remove undesired echoes that result from between a microphone

and a loudspeaker. However, for effective audio communication between groups of

people or multi-speaker conditions, AEC on multichannel environment is necessary

and the stereophonic channel is the minimum case of the environment [4], [12], [36]–

[39]. In Fig. 2.4, a schematic diagram of the stereophonic acoustic echo cancellation

in the teleconferencing is illustrated. Basically, conventional AEC techniques based

on adaptive filters estimate the echo using a FIR filter with adjustable coefficients to

model the acoustic impulse response of the echo path. In other words, two adaptive

FIR filters ĥ1 and ĥ2 are used to model the two echo paths in the receiving room.

In order to develop the LMS algorithm for stereo AEC, the echo signal can be

expressed as,

y(n) = h1(n) ∗ x1(n) + h2(n) ∗ x2(n) (2.14)
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Figure 2.4: Schematic diagram of the stereophonic acoustic echo cancellation.

where h1 and h2 are the loudspeaker-to-microphone impulse responses in the re-

ceiving room, and * denotes the convolution operation. Thus, the error signal is

formulated as,

e(n) = y(n)− ĥT1 x1(n)− ĥT2 x2(n) (2.15)

where

xi(n) = [xi(n), xi(n− 1), ..., xi(n−N + 1)]T

hi = [hi(0), hi(1), ..., hi(N)]T (i = 1, 2).

Specially, the convergence issue of ĥi becomes even more important in the stereo

case and multichannel AEC processing [36]. Setting aside the important aspect of

how convergence is achieved, it is assumed that the error signal can be ideally zero.

(In this case, the conventional single channel echo cancellation methods are simply
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extended to the stereo echo cancellation process.) As a result, it follows that

h̃1 ∗ x1 + h̃2 ∗ x2 = 0 (2.16)

where h̃i = hi − ĥi(i = 1, 2) is the misalignment vector. When the near-end speech

s(n) is talking in this case, it implies that

[h̃1 ∗ g1 + h̃2 ∗ g2] ∗ s(n) = 0 (2.17)

where g1 and g2 are the acoustic impulse responses in the transmission room, re-

spectively. In the frequency domain, it becomes

[H̃1(k)G1(k) + H̃2(k)G2(k)]S(k) = 0 (2.18)

where k is the k-th frequency bin. Considering the single channel case with G2 = 0,

the complete alignment (ĥ1 = h1) is achieved since G1S does not vanish at any

frequency. On the other hand, in the stereophonic case, the best choice is

H̃1G1 + H̃2G2 = 0 (2.19)

even if S has no zeros in the frequency range. However this equation does not

guarantee H̃1 = H̃2 = 0, which is the complete alignment condition. This issue is

the most crucial problem to remove the echoes in the stereophonic AEC. Although h1

and h2 are fixed in the receiving room, any change in G1 or G2 requires adjustment

of H̃1 and H̃1 except H̃1 = H̃2 = 0. Therefore, the adaptation algorithm must track

not only variations in the receiving room, but also variations in the transmission

room. The changes in the room are very hard to follow. For example, if one speaker

stops talking and another speaker starts talking at a different location, the impulse

responses g1 and g2 change suddenly. This difficult problem is to propose the new

technique for the convergence independent on the variations in the transmission
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room. So, this problem is called the nonuniqueness problem in the stereophonic

AEC [4].

To solve this problem, several signal decorrelaion methods were proposed such

as addition of random noise, decorrelation filters, interchannel frequency shifting

and interleaving comb filters [4], [36]. Unfortunately, these techniques might not be

satisfactory to obtain both the reduction of the misalignment and the perceptual im-

provement. Also, because of the strong cross-correlation between the stereo signals,

most of the traditional stereo acoustic echo cancellation approaches based on an

adaptive filter require some form of various de-correlation techniques, but the decor-

relation processes demand substantial complexity as the pre-processing procedure

and cause distortion of the reproduced signal.

2.4 Wiener Filtering for Stereophonic Acoustic Echo

Suppression

Stereophonic acoustic echo cancellation (SAEC) has a fundamental issue due to

the non-uniqueness problem which does not happen in the single channel case [4].

The traditional adaptive filter algorithms can not solve this problem well due to

the strong correlation be tween the stereo signals. To alleviate the problem, several

de-correlation algorithms have been proposed and tried. However, most of these

preprocessing techniques may affect the negative stereo perception and require the

computational complexity [38], [39]. In the past, a low complexity AES algorithm was

proposed [10]. It is based on spectral modification method which is widely used in the

speech enhancement area. A multichannel AES method was also presented with the

assumption that an user use a reasonably symmetric loudspeaker and microphone
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setup [11]. However, this assumption may be not realized in practice.

Recently, an open-loop stereophonic acoustic echo suppression (SAES) algorithm

without preprocessing was proposed for teleconferencing systems, where the Wiener

filter in the STFT domain is incorporated [15]. By using two weighting functions, the

stereo echo spectrum can be estimated from the stereo signals. In other words, this

approach does not identify the echo path impulse responses with adaptive filters,

so it can avoid the non-uniqueness problem in the stereophonic case. The undesired

echo can be suppressed by applying spectral modification techniques which are pro-

posed for speech enhancement like noise reduction or speech dereverberation [17].

In addition, for real-time operations, signal-to-echo ratio (SER) based Wiener filter

is employed as the echo suppression gain function to consider a trade-off between

musical noise reduction and computational complexity.

Taking the STFT on both sides of (2.14) with the near-end speech s(n) in Fig.

2.4 can yield as follows,

Y (k) = H1(k)X1(k) +H2(k)X2(k) + S(k). (2.20)

In Fig. 2.5, the SAES algorithms using the two weighting functions based on the

Wiener filter is represented. The stereo echo spectra consists of two parts. The first

one D1(k) = G1(k)X1(k) is correlated with the spectrum of the far-end signal x1(n)

and the other one D2(k) = G2(k)X2(k) is correlated with that of the second far-end

signal x2(n) but uncorrelated with that of the first signal. By minimizing the mean-

square error (MSE) J1 and J2, the two weighting functions G1(k) and G2(k) can be

formulated as follows,

J1 = E
[
|Y (k)−G1(k)X1(k)|2

]
, (2.21)

J2 = E[
∣∣Y1(k)−G2(k)X2(k)|2

]
. (2.22)
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Figure 2.5: SAES algorithm via two weighting functions.

Actually, these cost functions may be modified to another MSE like

J = E
[
|Y (k)−G1(k)X1(k)−G2(k)X2(k)|2

]
. (2.23)

Minimizing the error with respect to G(k) = [G1(k)G2(k)]T makes the following

estimator,

G(k) = Φ−1
XXΦXY (2.24)

where

ΦXX =

ΦX1X1(k) ΦX1X2(k)

ΦX2X1(k) ΦX2X2(k)

 ,
ΦXY = [ΦX1Y (k) ΦX2Y (k)]T .

Unfortunately, the matrix ΦXX may be ill-conditioned since the far-end signals are

strongly correlated. As a result, the matrix may cause inaccurate gain estimates and

be not suitable for the echo suppression. Therefore, by minimizing (2.21) and (2.22)
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with respect to G1(k) and G2(k), respectively, the following solutions are obtained,

G1(k) =
ΦX1Y (k)

ΦX1X1(k)
, (2.25)

G2(k) =
ΦX2Y1(k)

ΦX2X2(k)
(2.26)

where ΦXY (k) denotes the cross power spectral density (PSD) between x(n) and

y(n)

ΦXY (k) =

τ=∞∑
∞

E[x(n)y(n− τ)] exp(−jkτ),

=
τ=∞∑
∞

RXY exp(−jkτ).

From the criteria (2.21) and (2.22), it is obtained that E[D∗1(k)Y1(k)] = 0 and

E[D∗2(k)S(k)] = 0, where ∗ denotes the operation for complex conjugation. Thus,

the PSD of the near-end speech can be approximately estimated by

|Ŝ(k)|2 ≈ |Y (k)|2 − |D1(k)|2 − |D2(k)|2

= |Y (k)|2 − |G1(k)X1(k)|2 − |G2(k)X2(k)|2. (2.27)

Thus, the magnitude spectrum |Ŝ(k)| is calculated as |Ŝ(k)| = G(k)|Y (k)|, where

G(k) is the gain function that can be estimated through spectral modification

method like decision-directed approach [17]. In this framework, a priori signal-to-

echo ratio (SER) based Wiener filter can be applied in the STFT domain. The a

posteriori and a priori SER can be defined as

γ(n, k) ,
|Y (n, k)|2

λD(n, k)
, (2.28)

ξ(n, k) ,
λS(n, k)

λD(n, k)
(2.29)

where n is the time index and λD(n, k) and λS(n, k) denote the PSD of the stereo

echo and the near-end speech, respectively. To incorporate the Wiener filter for the
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echo suppression, it is assumed that the echo and near-end spectra are mutually

uncorrelated. Then, the gain function can be obtained as follows,

G(n, k) =
ξ(n, k)

1 + ξ(n, k)
. (2.30)

Even though the echo suppression algorithm is represented only for one microphone

signal, this approach can be simply extended to another microphone signal.
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Chapter 3

Stereophonic Acoustic Echo

Suppression Incorporating

Spectro-Temporal Correlations

3.1 Introduction

Acoustic echo cancellation techniques have been developed to overcome serious

conversation trouble due to the acoustic coupling between microphones and loud-

speakers [10]–[12], [16], [33]. Especially for spatial sound reproduction, the multi-

channel acoustic echo cancellation problem has been researched over the last decade.

Unlike single-channel echo cancellation, de-correlation algorithms are usually re-

quired to resolve the non-uniqueness problem, which results in a reconvergence is-

sue [12]. However, these strategies are likely to distort signals reproduced by loud-

speakers and demand a significant amount of computation.

Recently, inspired by several single-channel echo suppression methods [10], [11],
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a stereophonic acoustic echo suppression (SAES) technique [15] was proposed. This

approach estimates echo spectra in the short-time Fourier transform (STFT) domain

without pre-processing by introducing an a priori signal-to-echo ratio (SER) and

an a posteriori SER [33] under the Wiener filtering framework. This algorithm has

been found to operate well during double-talk periods in spite of the fact that it

does not apply any explicit double-talk detector.

In this chapter, to improve the estimation performance of the SAES method

presented in [15], we propose an enhanced SAES (ESAES) algorithm that incorpo-

rates spectral and temporal correlations among adjacent time frames and frequency

bins, based on the observation that linear systems can be accurately represented

by cross-band filtering in the STFT domain [40]. We introduce augmented vectors

considering the continuity in the time-frequency domain in order to estimate the

stereo echo more precisely, and calculate the extended power spectral density (PSD)

matrices and cross-PSD vectors incorporating adjacent components in the STFT

domain. The performance of the proposed algorithm is evaluated by echo return loss

enhancement (ERLE) and the ITU-T Recommendation P. 862 perceptual evalua-

tion of speech quality (PESQ) [41] measures. Experimental results showed improved

performances in terms of ERLE and PESQ compared with the conventional SAES

technique.

3.2 Linear Time-Invariant Systems in the STFT Do-

main with Crossband Filtering

In this section, we briefly review the representation of linear time-invariant (LTI)

systems in the STFT domain with crossband filtering [40]. Specially, the motivation
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of the proposed echo suppression algorithm based on spectro-temporal correlations

can be found in this framework. To identify LTI system, the STFT representation

of a signal x(n) is given by

xp,k =
∑
m

x(m)ψ∗p,k(m) (3.1)

where

ψp,k(n) , ψ(n− pL) exp(j
2π

N
k(n− pL)). (3.2)

ψ(n) denotes an analysis window of length N , p is the frame index k, k represents the

frequency-band index, L is the discrete-time shift, and ∗ denotes complex conjugation

operation. For the reconstruction of x(n) from its STFT representation xp,k, the

inverse STFT is given by

x(n) =
∑
p

N−1∑
k=0

xp,kψ̃p,k(n) (3.3)

where

ψ̃p,k(n) , ψ̃(n− pL) exp(j
2π

N
k(n− pL)) (3.4)

and ψ̃ denotes a synthesis window of length N .

Then, an STFT representation of LTI systems can be formulated using h(n) and

d(n) which are an impulse response of an LTI system with length Q and a output

signal, respectively, as follows,

d(n) =

Q−1∑
i=0

h(i)x(n− i)

=
∑
m,l

h(l)x(m− l)ψ∗p,k(m) (3.5)

which is obtained by using (3.1) and (3.2). Substituting (3.3) into (3.5), the output

signal can be rewritten as

dp,k =
N−1∑
k′=0

∑
p′

xp′,k′hp,k,p′,k′ (3.6)

27



where

hp,k,p′,k′ =
∑
m,l

h(l)ψ̃p′,k′(m− l)ψ∗p,k(m) (3.7)

may be interpreted as the STFT of h(n) using a composite analysis window. Using

(3.2) and (3.4), the equation (3.7) can be reformulated as

hp,k,p′,k′ =
∑
l

h(l)
∑
m

ψ(m)e(−j 2π
N
km)ψ̃((p− p′)L− l +m)e(j 2π

N
k′((p−p′)L−l+m))

= {h(n) ∗ φk,k′(n)}|n=(p−p′)L

, hp−p′,k,k′ (3.8)

where ∗ denotes convolution with respect to the time index n and

φ , ej
2π
N
k′n
∑
m

ψ(m)ψ̃(n+m)e−j
2π
N
m(k−k′). (3.9)

In other words, hp,k,p′,k′ depends on p− p′ rather than p and p′ separately. Sub-

stituting (3.8) in (3.6), the final expression of the output signal can be obtained

as

dp,k =

N−1∑
k′=0

∑
p′

xp′,k′hp−p′,k,k′

=
N−1∑
k′=0

∑
p′

xp−p′hp′,k,k′ . (3.10)

Let Nh be the length of the cross-band filters and then the STFT of the output

signal dp,k can be written as

dp,k =
N−1∑
k′=0

Nh−1∑
p′=0

xp−p′,k′hp′,k,k′ . (3.11)

Let d̂p,k be the resulting estimate of dp,k using only 2K cross-band filters around the

frequency-band k and ĥp′,k,k′ be an estimate of the cross-band filter hp′,k,k′ . Then,
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the estimated output signal d̂p,k is obtained as follows,

d̂p,k =
k+K∑

k′=k−K

Nh−1∑
p′=0

ĥp′,k,(k′modN)xp−p′,(k′modN) (3.12)

where the periodicity of the frequency-bands is exploited.

Therefore, the time domain convolution is not equivalent to the STFT domain

multiplication any longer since finite length analysis windows are employed in the

usual implementations. To solve this issue, crossband filtering is needed to perfectly

represent an LSI system in the STFT domain. For successful echo suppression in

adverse acoustic environments, system identification based on crossband filtering

and spectral correlations has to be employed.

3.3 Enhanced SAES (ESAES) Utilizing Spectro-Temporal

Correlations

A typical stereophonic acoustic echo scenario is illustrated in Fig. 3.1. The far-

end signals x1(n) and x2(n) at time index n are generated by the source signal v(n)

through the acoustic impulse responses g1(n) and g2(n) in the transmission room.

Let y(n) be the signal picked up by one of the microphones in the receiving room.

This signal can be modeled as

y(n) =
2∑
i=1

hi(n) ∗ xi(n) + s(n) (3.13)

where hi(n) represents the acoustic echo path from the ith loudspeaker to the mi-

crophone and s(n) is the near-end signal. In this work, we focus on only one of

the microphones to describe the stereophonic acoustic echo problem because we can

apply the same approach to the other microphone.
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Figure 3.1: Schematic diagram of the stereophonic acoustic echo scenario.

The proposed ESAES algorithm extends the SAES method in [15] by taking

account of correlations among adjacent time frames and frequency bins in the STFT

domain. According to [40], linear systems can be more accurately represented by

crossband filtering due to the effect of finite windows. Moreover, it is shown in [40]

that considering a few neighboring bins was enough although all the frequency bins

need to be taken into considerations theoretically. In order to combine this theory

with the SAES algorithm, we introduce the following augmented vector (Type 1) for

each far-end signal:

X1
i (n, k) = [Xi(n− T, k −K) . . . Xi(n− T, k +K)

Xi(n− T + 1, k −K) . . . Xi(n− T + 1, k +K)

. . . Xi(n, k −K) . . . Xi(n, k +K)]T (i = 1, 2) (3.14)

where Xi(n, k) is the STFT coefficient of the far-end signal xi(n) for the kth fre-

quency bin at the nth frame. The augmented vector defined in (3.14) consists not

only of the (2K+ 1) adjacent frequency bins from the current nth frame, but also of
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the previous T frames of (2K + 1) adjacent frequency bins. Thus, the dimension of

this augmented vector becomes M1 = (T +1)× (2K+1). Alternatively, by consider-

ing only adjacent frequencies of the current and previous frames of given frequency,

we can reduce the dimension of the augmented vector (Type 2) as follows:

X2
i (n, k) = [Xi(n− T, k) Xi(n− T + 1, k)

. . . Xi(n− 1, k) Xi(n, k −K)

. . . Xi(n, k +K)]T (i = 1, 2). (3.15)

The augmented vector in (3.15) is made of the (2K + 1) frequency bins at the

current nth frame and the kth frequency bin from frames (n − T ) to (n − 1), and

its dimension becomes M2 = T + 2K + 1. The components included in the two

types of augmented vectors with T = 2 and K = 2 are illustrated in Fig. 3.2. In

the remaining part of this work, for simplicity, we will use the notation Xi(n, k)

which represents the augmented vector shown either in (3.14) or (3.15), and use M

to denote the dimension of this augmented vector.

3.3.1 Problem Formulation

Let Y (n, k), X1(n, k), X2(n, k) denote the STFT coefficients of y(n) and the

augmented vectors corresponding to x1(n) and x2(n), respectively. Crossband con-

volutive filters are denoted by H1(n, k) and H2(n, k) that represent the acoustic

paths relating X1(n, k) and X2(n, k) to Y (n, k), respectively [40]. Then Y (n, k) can

be described as

Y (n, k) =

2∑
i=1

HH
i (n, k)Xi(n, k) + S(n, k) (3.16)

where S(n, k) is the STFT coefficient of the near-end signal s(n), including near-end

speech and noise, and superscript H denotes conjugate transpose.
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Figure 3.2: Two types of augmented vectors with T = 2, K = 2. The augmented vec-

tor (3.14) consists of 15 adjacent components in the bold square, and the augmented

vector (3.15) is made of 7 adjacent component in the shaded region.

As in the conventional SAES, let us denote the STFT of the echo component

due to x1(n) by D1(n, k), and likewise for x2(n) by D2(n, k). Then,

D1(n, k) = HH
1 (n, k)X1(n, k),

D2(n, k) = HH
2 (n, k)X2(n, k) (3.17)

assuming that D1(n, k) is correlated with x1(n) and D2(n, k) is correlated with

x2(n) but uncorrelated with x1(n). In general, we obtain the optimal weight vec-

tors Ĥ1(n, k) and Ĥ2(n, k) according to the minimum mean-square error (MMSE)
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criterion, which jointly minimize

J1 = E[|Y (n, k)−HH
1 (n, k)X1(n, k)|2], (3.18)

J2 = E[|Y1(n, k)−HH
2 (n, k)X2(n, k)|2] (3.19)

where Y1(n, k) = Y (n, k) − D1(n, k) and E[·] denotes expectation. By minimizing

(3.18) and (3.19) with respect to H1(n, k) and H2(n, k), we are led to the acoustic

path estimates

Ĥ1(n, k) = Φ−1
X1X1

(n, k)ΦX1Y
(n, k), (3.20)

Ĥ2(n, k) = Φ−1
X2X2

(n, k)ΦX2Y1
(n, k) (3.21)

where ΦXX(n, k) and ΦXY (n, k) denote the extended PSD matrix and cross-PSD

vector defined by

ΦXX(n, k) = E[X(n, k)XH(n, k)], (3.22)

ΦXY (n, k) = E[X(n, k)Y ∗(n, k)] (3.23)

with superscript ∗ denoting complex conjugation.

Given the estimated echo spectra, the near-end signal in the STFT domain,

S(n, k), can be estimated by means of the Wiener gain G(n, k) as follows:

Ŝ(n, k) = G(n, k)Y (n, k) (3.24)

under the assumption that the near-end signal and echo signal are uncorrelated.

Details on the estimation of the extended PSD matrices, echo spectra, and gain

function are described in the following subsection.
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3.3.2 Estimation of Extended PSD Matrices, Echo Spectra, and

Gain Function

The extended PSD matrix and cross-PSD vector related to X1(n, k) can be

obtained by first-order recursive averaging in the following way:

Φ̂X1X1
(n, k) = αΦΦ̂X1X1

(n− 1, k)

+ (1− αΦ)X1(n, k)XH
1 (n, k), (3.25)

Φ̂X1Y
(n, k) = αΦΦ̂X1Y

(n− 1, k)

+ (1− αΦ)X1(n, k)Y ∗(n, k) (3.26)

where 0 < αΦ < 1 is a smoothing factor. With Ĥ1 obtained by applying (3.25)

and (3.26) to (3.20), the estimate of D1(n, k) can be calculated by introducing an

additional overestimation control-factor matrix, B1, which is an extension of the

echo suppression level control factor in the conventional SAES:

D̂1(n, k) = |Ĥ
H

1 (n, k)B1X1(n, k)| (3.27)

where B1 is a diagonal matrix whereby the diagonal elements corresponding to

X1(n, k) are emphasized over the other elements. After deriving D̂1(n, k), the spec-

tral subtraction method in [10] is used to get the estimate of Y1(n, k).

In a similar way, D2(n, k) can be estimated by performing the following proce-
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dures:

Φ̂X2X2
(n, k) = αΦΦ̂X2X2

(n− 1, k),

+ (1− αΦ)X2(n, k)XH
2 (n, k), (3.28)

Φ̂X2Y1
(n, k) = αΦΦ̂X2Y1

(n− 1, k)

+ (1− αΦ)X2(n, k)Y ∗1 (n, k), (3.29)

D̂2(n, k) = |Ĥ
H

2 (n, k)B2X2(n, k)| (3.30)

where B2 is also an overestimation control-factor matrix. The overestimation control-

factor matrices B1 and B2 are applied to further reduce the residual echo. Let

Bi = diag{b1 . . . bM} (i = 1, 2) (3.31)

where bm weights Xi(nm, km), which represents the mth element of Xi(n, k). In this

work, we choose each bm as follows:

bm = αBi exp (−βt,i|n− nm| − βf,i|k − km|)

(i = 1, 2, m = 1, . . . ,M) (3.32)

in which the parameters αBi , βt,i, and βf,i are determined experimentally.

In order to obtain the gain function G(n, k), we introduce the a priori SER

ξ(n, k) and a posteriori SER γ(n, k) as in [33],

ξ(n, k) ,
λS(n, k)

λD(n, k)
, γ(n, k) ,

|Y (n, k)|2

λD(n, k)
(3.33)

where λS(n, k) and λD(n, k) denote the PSDs of the near-end signal and composite

echo, respectively. Estimates of λD(n, k), γ(n, k), and ξ(n, k) are formed and updated
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as [15]

λ̂D(n, k) = αDλ̂D(n− 1, k)

+ (1− αD)(|D̂1(n, k)|2 + |D̂2(n, k)|2), (3.34)

γ̂(n, k) =
|Y (n, k)|2

λ̂D(n, k)
, (3.35)

ξ̂(n, k) = αDDγ̂(n− 1, k)G2(n− 1, k)

+ (1− αDD) max(γ̂(n, k)− 1, 0) (3.36)

where 0 < αD < 1 and 0 < αDD < 1 are smoothing factors that have to be much

smaller than conventional values for SNR estimation in which the noise is assumed

to be stationary, because the echo signals are highly nonstationary in most cases.

Finally, according to the Wiener estimator theory, the gain function is given by

G(n, k) =
ξ̂(n, k)

1 + ξ̂(n, k)
(3.37)

and the estimated near-end Ŝ(n, k) is obtained from (3.24).

3.3.3 Complexity of the Proposed ESAES Algorithm

We investigate the computational complexity of the proposed ESAES algorithm

with half-overlapping windows and compare it with that of the conventional SAES in

[15], where 7/8-overlapping windows were applied. Considering the matrix inversions

in (3.20) and (3.21) and assuming the use of the divide-and-conquer algorithm [42],

the proposed technique requires a total of (8M3 + 24M2 + 104M + 52 + 24 log2N)

real-valued multiplications, 4M complex-valued divisions, 12 real-valued divisions,

and 20 square root calculations per frequency bin to obtain N samples in the time

domain, considering the frame overlaps where M and N are the dimension of the
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augmented vector and FFT size, respectively. On the other hand, the conventional

method needs (656 + 92 log2N) real-valued multiplications, 80 real-valued divisions,

and 80 square root calculations per frequency bin to produce the same number of

samples. As we choose appropriate values for M and N (e.g., M ≤ 4, N = 2048), the

complexity of the proposed algorithm can be kept lower than that of the conventional

SAES algorithm.

3.4 Experimental Results

To evaluate the performance of the proposed ESAES method, we conducted com-

puter simulations under various conditions. For performance assessment, we created

20 data sets from the TIMIT database such that each set consists of a source signal

v(n) and near-end signal s(n). The data sets were sampled at 16 kHz. The length of

each data set ranges from 10 s to 18 s and the total length of the data is 302 s. The

duration of the double-talk interval is between 5 s and 10 s. Both the transmission

room and the receiving room were designed to simulate a small office room of a size

4 m× 4 m× 3 m. All of the room impulse responses (RIRs) were generated with re-

verberation time T60 = 200 ms by means of the image method [43]. The length of the

RIRs was set to 512. The echo level measured at the input microphone is on average

3.5 dB lower than that of the near-end speech. A white noise was added to the micro-

phone signals such that SNR = 30, 20, and 10 dB. We applied a Hamming window

of length 2048, which is half-overlapped for taking the STFT. In the experiments,

the parameter values were set as follows: αΦ = 0.999, αD = 0.001, αDD = 0.001,

αB1 = 1.35, αB2 = 1.2, βt,1 = βt,2 = 0, βf,1 = 0.3, βf,2 = 0.32, and N = 2048. It is

noted that the window size was rather long, but the smoothing factors, αD and αDD
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Table 3.1: ERLE and PESQ scores of proposed ESAES algorithm in noiseless con-

ditions with different values of T and K

Augmented

Vector

ERLE (dB) PESQ

@
@
@
@
@

T

K
0 1 2 0 1 2

— 0 12.23 20.71 24.51 2.52 2.81 2.88

Type 1
1 22.93 34.39 34.98 2.84 2.90 2.78

2 23.82 35.91 36.04 2.85 2.80 2.51

Type 2
1 22.93 29.55 31.98 2.84 2.92 2.93

2 23.82 30.95 33.43 2.85 2.91 2.91

were quite small.

To verify the performance of the proposed ESAES, we evaluated the PESQ

score [41] and the ERLE measure which is defined by [16]

ERLE(n) = 10 log10

[
E[y2(n)]

E[ŝ2(n)]

]
(dB) (3.38)

where ŝ(n) denotes the residual echo signal at time index n after suppressing far-end

echoes in the single-talk case.

The overall results of the ERLE and PESQ scores obtained in noiseless conditions

are shown in Table 3.1 for different values of T and K. Type 1 and Type 2 in Table

3.1 indicate the two ways of constructing the augmented vectors, given in (3.14)

and (3.15), respectively. It is noted that the ESAES algorithm with (T = 0, K =

0) is equivalent to the conventional SAES with 50% window overlap. From the
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Table 3.2: ERLE and PESQ scores of proposed ESAES, compared to SAES (Yang)

in different SNR conditions

SNR 30 dB 20 dB 10 dB

ERLE
ESAES (Type 2, T = 1, K = 1) 28.66 21.32 11.22

SAES 19.48 17.85 11.00

PESQ
ESAES (Type 2, T = 1, K = 1) 2.87 2.62 1.93

SAES 2.71 2.52 1.91

whole results, we can observe that as more correlations among adjacent components

are taken into account, the higher the ERLE performance becomes. This means

that the correlation between adjacent time frames and frequency bins is helpful

to suppress the echo signals effectively. On the other hand, the PESQ scores of

the ESAES algorithm could not always be improved with increasing number of

adjacent components. It is found that the ESAES algorithm with the augmented

vectors of Type 2 is capable of maintaining the near-end signal more faithfully than

that with the augmented vectors of Type 1. Furthermore, when we consider the

adjacent components (Type 2, T = 1,K = 2), the best PESQ score is obtained. In

other words, adjacent components other than these may not be beneficial to estimate

the stereo echo accurately without distorting the near-end signal.

In Table 3.2, the performance of the ESAES algorithm, using Type 2 augmented

vectors with (T = 1, K = 1) and half-overlapping windows is compared to that of the

conventional SAES with 7/8-overlapping windows, under various SNR conditions.

The augmented vector of Type 2 with (T = 1, K = 1) was chosen as it provides a
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Figure 3.3: Waveforms and spectrograms for the double-talk case with 30 dB SNR.

(a) one of the far-end signals, (b) microphone signal, (c) near-end speech, and (d)

output of the ESAES.

good trade-off between the performance and computational complexity. We used

the same parameters values as in [15] (β1 = 1.35, β2 = 1.2, αλ = 0.6, αDD = 0.6,

αφ = 0.975, N = 2048). In all the tested SNR conditions, the proposed approach

outperformed the conventional SAES. In particular, it was found that the resulting

signals of SAES had a significant level of residual echo compared to those of ESAES.

Also, it could be seen that the ESAES preserved the near-end signal better as seen

from the comparison of the PESQ scores or in Fig. 3.3, which illustrates double-talk

performance through the waveforms and spectrograms of x1(n), y(n), s(n), and ŝ(n).

We also investigated the tracking performance and convergence speed of the

proposed ESAES and conventional SAES algorithms in the single-talk condition as

displayed in Fig. 3.4. Fig. 3.4(a) shows the microphone signal y(n) in the receiving
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Figure 3.4: Comparison of tracking performance and convergence speed between the

proposed ESAES and the SAES algorithms in the single-talk case. At 6 s, the source

location in the transmission room was changed and at 15 s, the microphone in the

receiving room moved, SNR = 30 dB and T60 = 200 ms. (a) y(n) in the receiving

room. (b) Temporal variation of ERLE.

room. In this experiment, the source location in the transmission room was changed

at 6 s and the microphone in the receiving room changed its location at 15 s. Fig.

3.4(b) shows the variation of ERLE over time. From these results, we can observe

that the proposed ESAES algorithm did not show any significant tracking diffi-

culty in the dynamic environment and always outperformed the conventional SAES

method.

3.5 Summary

In this chapter, we have proposed the ESAES algorithm using augmented vec-

tors in order to incorporate spectral and temporal correlations. The approach takes
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advantage of the correlations among components in adjacent time frames and fre-

quency bins in the STFT domain. To estimate the stereo echo signal, the extended

PSD matrices and cross-PSD vectors are derived from the signal statistics. Ex-

perimental results demonstrated that the proposed ESAES method is superior to

conventional SAES in terms of both ERLE and PESQ.
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Chapter 4

Nonlinear Residual Echo

Suppression Based on Deep

Neural Network

4.1 Introduction

Various acoustic echo cancellation (AEC) and suppression (AES) techniques have

been proposed to reduce the echo components from the microphone signals when

there exists acoustic coupling between loudspeakers and microphones [7], [8], [11],

[33], [34], [44]. However, in most of the cases, a certain amount of residual echo

remains at the output of these methods possibly due to the inherent nonlinearity of

the loudspeakers and power amplifiers, nonlinear acoustic transfer function of the

echo path, or imperfection of AEC and AES.

Several residual echo suppression (RES) post-filtering techniques have been in-

troduced to further attenuate the remaining echo in the output of AEC or AES [9],
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[16], [18], [35], [45], [46]. [9] and [16] proposed an RES gain function similar to that

of the spectral subtraction or Wiener filters based on the signal-to-echo ratio (SER)

estimated in a decision-directed manner. A subband filtering technique utilizing

spectral subtraction was also developed for which the power spectral density of the

residual echo was estimated using truncated Taylor series expansion [35]. In [45], the

magnitude of the residual echo in a subband was approximated by a linear function

of both the current and previous spectra of the far-end signal in the same band,

while it was modeled as a function of the harmonic frequency components at the

current frame of the far-end signal in [46]. Recently, RES based on artificial neural

network (ANN) was proposed to model the mapping from the far-end to the residual

echo signal [18]. The inputs to this ANN are the magnitude spectrum of the given

frequency bin in the far-end signal and the sum of the spectra that may affect that

frequency bin. Though some improvements have been observed, these methods are

not considered to fully exploit the nonlinear relationship among the residual echo,

far-end signal and AES output in all the frequency bins.

In this chapter, we propose a novel approach to nonlinear RES using deep neural

network (DNN) which estimates the optimal RES gain based on both the far-end sig-

nal and the AES output. It is beneficial to utilize the DNN for describing the highly

complex mapping between the RES gain and the relevant signals considering all

frequency bins for several consecutive frames jointly since DNNs have been success-

fully applied to automatic speech recognition and speech enhancement [47]–[51] due

to their capability in learning complicated mappings among various data. We have

evaluated the overall performance of the proposed technique not only in matched

but also in mismatched conditions with various RIRs, signal-to-noise ratios (SNRs),

SERs, and amplifier characteristics. As measures of performance, we use echo return
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Figure 4.1: Schematic diagram of AES system with RES post-filter.

loss enhancement (ERLE) for single-talk periods and ERLE, signal-to-distortion ra-

tio (SDR) [52], the ITU-T Recommendation P. 862 perceptual evaluation of speech

quality (PESQ) scores [41] for double-talk periods. Experimental results show that

the proposed method achieves improved speech quality and echo suppression com-

pared to the conventional algorithm with ANN-based residual echo estimation and

Wiener filtering [18].

4.2 A Brief Review on RES

AES [7], [8], [11], [33], [34], [44] modifies the spectra of the microphone signal

aiming at attenuating the acoustic echo for hands-free communication or telecon-

ference. A single-channel AES system is illustrated in Fig. 4.1. Let x(t) denote the

far-end signal. The microphone signal, y(t), is composed of the echo signal, h(t)∗x(t),

the near-end speech s(t), and the ambient noise n(t) where h(t) represents the im-
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pulse response of the echo path and ∗ is the convolution operation. Let X(n, k) and

Y (n, k) be the short-time Fourier Transform (STFT) coefficients of x(t) and y(t) for

the k-th frequency bin at the n-th frame, respectively. The spectral gain function

of AES, GAES(n, k) is derived similarly to spectral subtraction or Wiener filtering.

Due to various factors such as the limitations of power amplifiers or loudspeakers,

the output of AES, ŜAES(n, k) still possesses signal components caused by echo. To

further suppress these components, an additional nonlinear RES filter can be ap-

plied to the AES output. With the RES gain GRES(n, k), the final estimated speech

spectrum, Ŝ(n, k) is given by

Ŝ(n, k) = {GRES(n, k) ·GAES(n, k)}Y (n, k)

= GRES(n, k)ŜAES(n, k). (4.1)

Finally, the estimated speech signal ŝ(t) is computed by taking the inverse STFT

(ISTFT) with overlap-add.

4.3 Deep Neural Networks

In this section, we briefly introduce deep neural networks (DNNs) which is a

conventional multilayer perceptron (MLP) with many hidden layers (≥ 2). Fig. 4.2

represents a DNN which consists of an input layer, hidden layers, and an output

layer. For the sake of notation simplicity, let the input layer be layer 0 and the

output layer be layer L for an (L + 1)-layer DNN. The representation of the DNN

at the l-th layer is formulated as follows

vl = σ(z) = σ(Wlvl−1 + bl), (0 < l < L) (4.2)
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where z = Wlvl−1 + bl ∈ <Nl×1, vl ∈ <Nl×1, Wl ∈ <Nl×Nl−1 , bl ∈ <Nl×1, and Nl

are the excitation vector, the activation vector, the weight matrix, the bias vector,

and the number of neurons at l-th layer. The observation vector as input feature is

v0 and its dimension is N0. For the activation function σ(·), the sigmoid function

σ(z) =
1

1 + exp(−z)
(4.3)

or the hyperbolic tangent function

tanh(z) =
exp(z)− exp(−z)
exp(z) + exp(−z)

(4.4)

or the rectified linear unit (ReLU) function

ReLU(z) = max(0, z) (4.5)

is employed in the DNN framework and the sigmoid function is the most popular

activation function in most applications, so it is assumed that this function is used

unless noted.

The target data type at the output layer is chosen based on the tasks. For the

regression tasks, the values in the output layer can be generated through a linear

layer vL = z = WlvL−1 + bL or a layer with sigmoid output functions vL = σ(z) =

σ(WLvL−1 +bL). The output vector VL ∈ <NL and NL denotes the output dimen-

sion. For the multi-class classification tasks, each output neuron represents each class

{1, ..., i, ..., NL}. The i-th value in the output layer indicates the probability P (i|v0)

where the observation vector v0 belongs to i-th class. To calculate a multinomial

probability distribution, the output vector vL has to be normalized. This process

can be successfully done by applying a softmax function

vLi = softmaxi(z
L) =

exp(zLi )∑NL
j=1 exp(zLj )

(4.6)
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Figure 4.2: An example of deep neural network.

where zLi and NL denote the i-th element of the excitation vector zL and the number

of classes at the output layer, respectively.

The DNN model parameters are unknown values and should be estimated from

the training samples which are already labeled as the target values. Let the training

set be {(on, yn)| 0 ≤ n < N} where o and y are the n-th observation vector and

the corresponding vector as the desired target output. This process is called the

parameter estimation or the training process.

For the initialization of the DNN parameters, restricted Boltzmann machines

(RBMs) can be utilized as a pre-train process [49]. After that, to train the DNN

model, it is the most important to decide the training criterion because the goal
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of the task and these are strongly correlated. The two popular training criteria are

widely used for the practical applications. The first one for the regression tasks is

the mean square error (MSE) criterion

JMSE(W,b|o,y) =
1

N

N∑
n=1

NL∑
n′=1

(yn,n′ − vLn,n′)2 (4.7)

where n′ denotes the n′-th element of yn. For the classification tasks, the second one

is the cross-entropy (CE) criterion

JCE(W,b|o,y) =
1

N

N∑
n=1

NL∑
n′=1

−yn,n′ log(vLn,n′) (4.8)

where y is a probability distribution. For the supervised training process, the DNN

model parameters can be learned with the error backpropagation (BP) algorithm

which is based on gradient algorithm. This is called the fine-tuning process.

4.4 Nonlinear RES using Deep Neural Network

In this section, we propose an approach to estimate the RES gain based on DNN

for signal-channel case. Here, the DNN system is employed to find the highly complex

mapping between the RES gain and the relevant signals such as far-end signal and

AES output. There are several reasons why we choose the RES gain as the target

output of the DNN instead of the clean near-end speech or the residual echo signal.

First, since the RES gain is confined to the finite range (0, 1), it straightforwardly

fits the output of a sigmoid function which is used as the activation function in the

output layer. Also, additional gain modifications such as the application of minimum

and maximum gains and temporal smoothing may be easily applied to the gain if

necessary.
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A DNN system for the proposed method is illustrated in Fig. 4.3 where X(n),

ŜAES(n) and GRES(n) are defined as follows:

X(n) = [X(n, 1) . . . X(n,K)]T , (4.9)

ŜAES(n) = [ŜAES(n, 1) . . . ŜAES(n,K)]T , (4.10)

GRES(n) = [GRES(n, 1) . . . GRES(n,K)]T , (4.11)

where K = N/2+1 when taking N -point STFT and T denotes the transpose opera-

tion. The DNN is a feed-forward neural network which includes an input layer, three

hidden layers and an output layer. The magnitude spectra of the far-end signal and

the AES output in all frequency bins over T successive frames are fed to the input

layer, which makes the number of the input units 2 × K × T . The input features

are normalized to have zero mean and unit variance. The output is the RES gain

vector in the current frame, corresponding to K output units. Each hidden layer

consists of binary units and the logistic sigmoid function is applied as nonlinear ac-

tivation of the units. With this network structure, the proposed system can consider

spectro-temporal correlations which may come from harmonic distortion, insufficient

frequency resolution or nonlinear echo path.

To initialize the DNN parameters, we pre-train a model built by stacking re-

stricted Boltzmann machines (RBMs) [49]. Taking account of the real-valued input

feature, the first RBM is a Gaussian-Bernoulli RBM and two Bernoulli-Bernoulli

RBMs can be stacked on top of the first RBM. These RBMs can be trained layer-

by-layer in an unsupervised greedy fashion using contrastive divergence (CD). After

this pre-training, we run the supervised fine-tuning stage where the back-propagation

algorithm with the minimum mean squared error (MMSE) between the estimated

RES gain, GRES(n, k) and the optimal gain, GRES,opt(n, k), is employed to train the
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Figure 4.3: A DNN system for the proposed residual echo suppression.

DNN. The optimal RES gain GRES,opt(n, k) is defined as follows:

GRES,opt(n, k) = max

{
Gmin,min

(
|S(n, k)|
|ŜAES(n, k)|

, 1

)}
, (4.12)

where S(n, k) is the STFT coefficient of the clean near-end speech and Gmin = 10−4

is introduced to reduce musical artifacts. A stochastic gradient descent algorithm

is performed in mini-batches to improve learning convergence with the objective

function,

MMSE =
1

M

M∑
m=1

K∑
k=1

(GRES,opt(m, k)−GRES(m, k))2 (4.13)

where M is the mini-batch size. The detailed procedures for pre-training and fine-

tuning are described in [49], [50].
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As for the training data, multi-condition data with various levels of SNR and

echo paths including both single- and double-talk cases are utilized. It is noted that

considering only a few different echo paths was enough to train the mapping as

the linear echo which is heavily dependent on the echo path was suppressed in the

AES output. Moreover, the proposed deep structure can accommodate the mapping

for the both single- and double-talk cases without use of any explicit double-talk

detectors since the training data include both of the situations. The proposed method

was the first attempt to suppress residual echo using DNN and the DNN structure

can be easily used as a pre-processing of speech applications in a DNN framework.

4.5 Experimental Results

To evaluate the performance of the proposed RES technique, we conducted sev-

eral experiments under various conditions. From the TIMIT database, we created

500 files (4444 s) as the far-end signals of which 400 files (3576 s) were used for train-

ing while the other 100 files (868 s) were used for the test. These files were sampled

at 16 kHz. To simulate realistic nonlinear echo signal captured by the microphone,

we performed three processes on the far-end signals: clipping, application of a model

for a nonlinear loudspeaker, and convolution with RIRs. As for the artificial clipping

mimicking amplifier characteristics, both the hard and soft clippings were consid-

ered. If x(n) denotes the far-end input signal, the outputs of the hard and soft
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clippings, xhard and xsoft can be obtained as [53]

xhard(n) =



−xmax, x(n) < −xmax

x(n), |x(n)| ≤ xmax

xmax, x(n) > xmax

(4.14)

and

xsoft(n) =
xmaxx(n)

ρ
√
|xmax|ρ + |x(n)|ρ

, (4.15)

respectively, where xmax is the maximum value of the output signal. For soft clipping,

the value of ρ was set to 2. The output of the hard or soft clipping was then processed

by a memoryless sigmoidal function simulating a nonlinear loudspeaker as follows

[54] :

xNL(n) = γ
( 1

1 + exp (−a · b(n))
− 1

2

)
(4.16)

where

b(n) =
3

2
x(n)− 3

10
x(n)2, (4.17)

in which x(n) and xNL(n) are the input and output signals of the loudspeaker. The

parameter γ is the sigmoid gain which was set to γ = 2. The sigmoid slope value a was

chosen as a = 4 if b(n) > 0 and a = 1/2 otherwise. A receiving room was designed

as a small office room with dimensions 4×4×3 m3. By using the image method [43],

the RIRs from 9 loudspeaker locations to the microphone in the receiving room were

generated with reverberation time T60 = 200 ms. The locations of the loudspeakers

and the microphone are given in Fig. 4.4, and the length of the RIRs was set to 512.

The echo level measured at the microphone was on average 3.5 dB lower than that of

the near-end speech. For performance evaluation, the ERLE and PESQ scores [41]
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[1 2 1]

Spk1 
[1 1 1.25]

Spk2 
[2 1 0.75]

Spk3 
[3 1 1]
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[3 2.5 1]

[3.5 2.5 1.2]
Spk6 
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[2.5 3.5 0.9] 

Spk8
[1.5 3 1.5] 

Spk4 
[2 2 1]

Spk9 
[0.5 1.5 1]

Figure 4.4: Locations of one microphone and 9 loudspeakers in a simulated receiving

room of 4 × 4 × 3 m3 for echo DB.

were used as objective measures. The ERLE is defined by

ERLE(t) = 10 log10

[
E[y2(t)]

E[ŝ2(t)]

]
(dB). (4.18)

First, the conventional AES technique [34] was applied to the whole data set.

The AES algorithm was slightly modified so that it fitted to single channel AES

by eliminating the second-channel echo estimation. The parameters for the AES

were set to the values given in [34]. The average ERLE for the tested data was

approximately 9 dB due to the severe nonlinear distortion even though the AES

algorithm was shown to remove the linear echo to a certain extent.
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Second, we implemented the ANN-based RES method using spectral features [18]

to compare with the proposed RES technique. The 128-point STFT was applied with

75% overlap. The estimator in each frequency bin for the residual echo was a feed-

forward network with two hidden layers of two log-sigmoid units. The magnitude

spectra of the far-end signal in the current band and the power over all subbands

up to the half of the current band were used as the inputs. The learning rate for the

online adaptive adjustment of the residual echo implemented with LMS algorithm

was set to 0.008, which resulted in the best performance empirically. The training was

performed on 30 files (267 s) of the residual echo applying RIRs from the locations

of Spk1, Spk2, and Spk3 to that of the Mic in Fig. 4.4. The parameters were set as

follows: the smoothing parameter λ = 0.95 and the echo suppression factor µ = 5.0.

The information of double-talk periods was manually marked and applied to the

method instead of applying a double-talk detector. We also tried training with larger

DB or taking 256-point STFT, but neither of them could bring about performance

improvement.

For the training of the proposed technique, the 4800 files (11.92 hours) established

with a hard clipping at 80% of the maximum amplitude for clean and 3 SNR levels

(30, 20, and 10 dB) at the locations of Spk1, Spk2, and Spk3 were used to train the

DNN. The additive noise was white Gaussian noise. The frame length was set to

256 samples with 50% overlap, and a 256-point STFT was applied to each frame.

Each hidden and the output layer had 2048 and 129 units, respectively. The input

vector included the current frame and the previous two frames, which made it a

774-dimensional vector. In the pre-training, the number of epochs for the RBM in

each layer was 20 and the learning rate was 0.0005. In the fine-tuning, the learning

rate was set to 0.1 for the first 10 epochs, then decreased by 10% after each epoch.
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Total iteration number was 50 and the mini-batch size M was set to 256. For the

tests, we generated two copies of 100 far-end speech files (868 s) for each of the 9

locations of the loudspeaker. One copy was mixed with another 100 files of near-end

speech selected from TIMIT DB to evaluated double-talk performance, while the

other one was used to assess the performance for single-talk periods.

In Table 4.1, the overall results of the ERLEs for single-talk periods and PESQ

scores for double-talk periods without additive noise are shown, where the test data

were constructed with a hard clipping at the 80% of the maximum amplitude of the

input signal. The result demonstrates that the proposed method based on DNN out-

performed the conventional RES [18]. Although the proposed method were trained

with only a few of the RIRs, the performance for the matched and mismatched

loudspeaker positions did not show significant differences. It may support our as-

sumption that the mapping from both the far-end signal and the AES output to the

RES gain would not be substantially affected by the acoustic environment.

Table 4.2 shows the performance at the fifth loudspeaker’s position under various

SNR conditions with a hard clipping at 80% of the maximum amplitude. Both

the ERLEs and PESQ scores of the proposed method were improved compared

with those of the conventional one. The performance of the proposed method with

different numbers of units in each hidden layer is also demonstrated which shows

a trade-off between the computational complexity and the performance of the RES

algorithm, although the performance with 256 units was still significantly better

than that of the conventional method.

To examine the effects of other factors such as signal-to-echo ratios (SERs),

clipping types and amounts of clipping on the RES algorithms, we additionally tested

several cases corresponding to other mismatches at the location of Spk5 without
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additive noise, of which the result is given in Table 4.3. SER 0 dB means that the

near-end speech level was adjusted so that the near-end speech to echo ratio was on

average 0 dB. HC (l%) and SC (l%) indicate the hard and soft clipping at l% of the

maximum amplitude of the input signal, respectively. In all 4 cases, the proposed

method outperformed the conventional RES.

Through the PESQ comparison between the proposed and the conventional

methods, the performance of the proposed algorithm based on DNN is more im-

proved than the ANN-based. To validate the detail performance in double-talk pe-

riods, additional measures were adopted. The first measure is ERLE in double-talk

(DT) and another one is speech-to-distortion ratio (SDR) which is defined as [52]

SDR , 10 log 10
|starget|2

|einterf + enoise + eartif |2
[dB] (4.19)

where starget is a version of the true source modified by an allowed distortion and

einterf , enoise, eartif are respectively the interferences, noise and artifacts error terms.

In Table. 4.4, the overall performance of the ERLEs and SDR for double-talk peri-

ods without noise is shown. The clipping condition is the same to the environment

represented in Table. 4.4. As expected, the performance result shows that the pro-

posed technique outperformed the conventional RES. Specially, compared with the

ANN-based RES, ERLE in double-talk improves more than 2 dB on average. Con-

sequently, it if found that the proposed method has the notable capacity for residual

echo suppression in both single-talk and double-talk periods. Since the DNN-based

algorithm can continuously track the residual echo by using the trained information

in double-talk periods, the RES performance may be kept regardless of the existence

of the near-end speech. On the other hand, the ANN-based method could not track

the residual echo in double-talk periods because it is frozen or stopped to avoid the
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divergence problem when the double-talk situation is detected. The SDR perfor-

mance of the proposed method is also superior to the conventional one. While the

ANN-based method may degrade the speech components, it can be seen that the

proposed one recovers these components from the SDR comparison. In other words,

we conclude that the DNN-based RES can suppress the residual echo including the

nonlinearity components and preserve the near-end speech effectively.

Considering mismatched cases in different SNR conditions at the location of

fifth speaker, the performance of both two methods is shown in Table. 4.5. Actually,

the DNN structure of the proposed method was already trained on the various noise

conditions, so both the ERLE and SDR of the proposed one were improved compared

with the ANN-based algorithm. Therefore, the DNN-based technique may achieve

not only residual echo suppression but also slight noise reduction. Whenever the

size of each layer is larger, SDR performance is higher but ERLE results in DT are

almost same. Thus, the DNN-based technique may have the capability for robust

speech recovery when the residual echo and noise occur simultaneously.

We checked the effects of other factors (SER, clipping types and amounts of the

clipping) as done in Tabel. 4.3 and the result is given in In Table. 4.6. Similar to

the previous cases (Table. 4.3), the proposed method outperformed the conventional

ANN-based RES in both terms of ERLE and SDR. The proposed method may be

more robust to sereral mismatch environment than the conventional RES since the

DNN can train the nonlinear characteristics of the residual echo by using a number

of neurons and deep layers.

Fig. 4.5 shows the evolution of the ERLE over time in conjunction with the

corresponding unprocessed echo waveform. Again, we could confirm the proposed

algorithm attenuated the residual echo components more effectively than the con-
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Figure 4.5: Comparison of ERLE at the location of Spk5 in a single-talk situation

with SNR = 30 dB and T60 = 200 ms.

ventional RES.

4.5.1 Combination with Stereophonic Acoustic Echo Suppression

In this subsection, we evaluated the performance of the proposed method in the

stereophonic case. We conducted several experiments under various conditions. From

the TIMIT database, we created 500 files (4459 s) as the far-end signals of which 400

files (3591 s) were used for training while the other 100 files (868 s) were used for the

test. These files were sampled at 16 kHz. The RIR simulation by image method [43]

was also the same condition to that in [34]. The clipping condition was a hard clipping

at 80 % of the maximum amplitude and the nonlinear function used in Section 4.5

were applied on the experiments. In the data, 4 SNR conditions were considered,

which are clean, 30 dB, 20 dB, and 10 dB. The additive noise was white Gaussian

noise. Considering the stereophonic AES, the method (TK = 11, Type2) [34] which

was proposed in the previous chapter was used and the parameter setting was the
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same.

In the proposed method, the number of the hidden layers in the DNN was 2. Each

hidden and the output layer had 2048 and 129 units, respectively. The input vector

included the current frame and the previous frame. The pre-training and the fine-

tuning were operated through the same parameters and procedures in Section 4.5.

These evaluations can be seen as tests in the matched conditions since the training

and test environments were equivalent.

For objective evaluation, ERLE and PESQ were used in the various environments

and the results are illustrated in Table. 4.7. Applying the proposed RES technique

on the SAES case, the overall performance was much improved compared with only

following SAES. It is found that the ERLE and PESQ score increased at least 20

dB and 0.3 point, respectively. Therefore, the proposed algorithm can also suppress

the nonlinear echo in the stereophonic case.

For subjective evaluation, we conducted the mean opinion score (MOS) test in

the various SNR conditions in verify the perceptual quality improvement. For this,

14 professional listeners decided the subjective score. The results are graded using

a five-point score [55]. In Table. 4.8, we concluded that the proposed algorithm is

superior in suppressing the nonlinear echo.

Last, we check the real time factor (RTFs) for complexity of the proposed RES.

The RTFs for CPU were measured using one core of Intel Xeon E5-2620 2.4 Ghz

processor. The regression process of the proposed algorithm was done with Kaldi

platform. Since the process time in the system was 0.086 RTF, we think that the

proposed RES can be applied to several applications based on DNN like speech

recognition.
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4.6 Summary

In this chapter, we have proposed an optimal residual echo suppression gain

regression employing DNN. The DNN could represent the complicated mapping

from the AES output and far-end signal in the whole frequency bins to RES gains.

Furthermore, the proposed method does not need any explicit double-talk detectors

as the DNN can accommodate the mapping for both single-talk and double-talk

cases. The proposed RES algorithm outperformed the conventional one in terms of

ERLE for single-talk situations and ERLE, SDR and PESQ scores for double-talk

situations.
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Table 4.1: ERLE and PESQ scores obtained with the matched and mismatched

RIRs.

Measure Condition None ANN [18] Proposed

ERLE

Matched

Spk1 9.04 21.73 34.73

Spk2 9.74 22.82 36.57

Spk3 9.01 21.85 35.94

Mismatched

Spk4 9.26 22.19 33.62

Spk5 9.51 21.91 33.85

Spk6 8.63 20.84 35.58

Spk7 9.89 23.21 34.12

Spk8 9.68 21.68 32.87

Spk9 10.20 22.57 32.80

PESQ

Matched

Spk1 2.58 2.67 2.95

Spk2 2.64 2.68 3.01

Spk3 2.64 2.70 3.04

Mismatched

Spk4 2.64 2.67 2.99

Spk5 2.62 2.69 2.98

Spk6 2.57 2.63 2.92

Spk7 2.67 2.70 3.00

Spk8 2.68 2.72 3.02

Spk9 2.67 2.71 3.00
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Table 4.2: ERLE and PESQ scores in different SNR conditions at the location of

Spk5.

Measure SNR None ANN [18]

Proposed

Size of each layer

256 512 2048

ERLE

Clean 9.51 21.91 31.06 31.89 33.85

30 dB 9.48 21.90 31.18 31.83 33.84

20 dB 9.23 21.57 29.36 29.91 31.92

10 dB 7.38 18.73 25.62 25.96 27.37

PESQ

Clean 2.62 2.69 2.83 2.86 2.98

30 dB 2.59 2.69 2.82 2.85 2.97

20 dB 2.46 2.63 2.60 2.64 2.78

10 dB 2.07 2.35 2.45 2.47 2.57
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Table 4.3: ERLE and PESQ scores in the various mismatched conditions at the

location of Spk5.

Measure Condition None ANN [18] Proposed

ERLE

SER 0 dB 9.57 21.91 32.71

HC (70%) 9.50 21.84 34.43

SC (80%) 9.47 21.61 33.48

SC (70%) 9.46 21.53 33.10

PESQ

SER 0 dB 2.40 2.48 2.76

HC (70%) 2.61 2.68 2.98

SC (80%) 2.52 2.60 2.89

SC (70%) 2.50 2.58 2.87
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Table 4.4: ERLE in double-talk (DT) and SDR obtained with the matched and

mismatched RIRs.

Measure Condition None ANN [18] Proposed

ERLE in DT

Matched

Spk1 0.91 1.90 3.80

Spk2 1.11 2.10 4.29

Spk3 0.83 1.75 4.02

Mismatched

Spk4 0.86 1.79 3.66

Spk5 0.95 1.96 4.04

Spk6 1.10 2.22 4.06

Spk7 0.85 1.75 3.84

Spk8 0.84 1.83 3.77

Spk9 1.02 1.94 3.94

SDR

Matched

Spk1 13.23 12.71 15.83

Spk2 13.16 12.38 15.60

Spk3 13.56 12.73 15.21

Mismatched

Spk4 13.71 12.92 15.97

Spk5 12.71 12.49 15.52

Spk6 13.30 12.44 15.65

Spk7 14.17 13.02 16.19

Spk8 13.65 12.39 16.00

Spk9 13.87 12.45 15.86
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Table 4.5: ERLE in DT and SDR in different SNR conditions at the location of

Spk5.

Measure SNR None ANN [18]

Proposed

Size of each layer

256 512 2048

ERLE in DT

Clean 0.88 1.79 3.79 3.98 3.66

30 dB 0.84 1.79 3.75 3.87 3.75

20 dB 0.77 1.80 2.60 2.65 2.63

10 dB 0.57 2.22 3.01 2.88 3.09

SDR

Clean 13.71 12.92 15.70 15.82 15.97

30 dB 13.36 12.89 15.62 15.74 15.91

20 dB 13.08 12.65 15.04 15.17 15.36

10 dB 11.41 11.01 12.91 13.08 13.16
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Table 4.6: ERLE in DT and SDR in the various mismatched conditions at the

location of Spk5.

Measure Condition None ANN [18] Proposed

ERLE in DT

SER 0 dB 1.51 2.59 4.10

HC (70%) 0.90 1.83 3.30

SC (80%) 1.09 2.10 3.46

SC (70%) 1.15 2.17 3.52

SDR

SER 0 dB 11.10 11.25 14.41

HC (70%) 13.58 12.84 15.94

SC (80%) 12.75 12.34 15.36

SC (70%) 12.53 12.21 15.21

Table 4.7: ERLE and PESQ in the various SNR conditions.

Measure Method Clean SNR 30 dB SNR 20 dB SNR 10 dB

ERLE
SAES 12.99 12.94 12.42 9.15

SAES + proposed 39.76 39.03 32.85 30.09

PESQ
SAES 2.768 2.690 2.560 2.280

SAES + proposed 3.100 2.988 2.875 2.589
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Table 4.8: MOS results for subjective test in the various SNR conditions.

Method Clean SNR 30 dB SNR 20 dB SNR 10 dB

None 2.74 2.74 2.37 1.97

SAES 3.80 3.37 2.97 2.40

SAES + proposed 4.53 4.30 3.89 2.76
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Chapter 5

Enhanced Deep Learning

Frameworks for Nonlinear

Acoustic Echo Suppression

5.1 Introduction

Due to the popularity of mobile phones and hands-free devices, nonlinear acoustic

echo cancellation has become important and been developed over the last decades.

Specially, cheap amplifiers and loudspeakers used in these devices mostly generate

significant nonlinearities in echo signal which is not a linear relationship with the far-

end signal any more even when the echo path is perfectly linear. These components

cannot be easily removed by the linear echo cancellation algorithms which are kinds

of adaptive filter methods based on gradient theory such as the least mean square

(LMS), the recursive least squares (RLS), and affine projection (AP) algorithms.

To alleviate the nonlinear acoustic echo problem, some methods have been stud-
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ied. In [26], based on the tap-delayed neural networks (TDNN), the nonlinear por-

tion was first estimated and adaptively updated with the LMS scheme. Also, the

adaptive Volterra filters have been widely used and revised since the structure of

these filters can be seen as a straightforward generalization of linear adaptive filters.

In [19], a memoryless polynomial Hammerstein model or its cascaded model with

a linear finite impulse response (FIR) filter was exploited to describe the nonlinear

characteristic. These filters can be considered as a subclass of the Volterra series

filter. Similarly, a cascaded structure which consists of polynomial Volterra filters

for the nonlinear loudspeaker and the normalized LMS (NLMS) algorithm for the

linear property was proposed [20]. By Kuech and Kellermann, an approach based

on adaptive second-order Volterra filter was proposed [21]. This method is regarded

as an extension of partitioned block algorithm for efficient computation. Also, to

approximate generic N -th order Volterra filters, the combinations of a linear kernel

and quadratic kernels were introduced [22]. Based on the linear-to-nonlinear power

ratio, this method can control the amount of nonlinear echo which has to be es-

timated from the quadratic kernel. For more efficient Volterra alternative, another

kernel combination technique was integrated in the framework [23]. In this way,

each kernel of a single Volterra filter was replaced by a combination of kernels for

lower complexity. In [24], nonlinear echo power estimation using the second-order

Volterra filter was adopted for acoustic echo suppression in the frequency-domain.

For the precise estimation, a soft decision scheme with a priori probability of near-

end speech absence was incorporated in the AES method. Besides, power filters as

approximations of nonlinear acoustic echo paths that can be modeled by the cascade

of a linear filter were proposed to improve the convergence speed [25]. In addition,

a kernel which consists in a weighted sum of the linear and the Gaussian kernels
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was exploited in the kernel based AP algorithm [27] or a multichannel structure for

modeling a nonlinear echo path was proposed [53]. A functional link adaptive filter-

ing was also used for capturing the nonlinearity in echo signal [54]. Recently, deep

neural networks (DNNs) were adopted to suppress the nonlinear echo components

in residual echo [56]. A DNN architecture, which is suitable to model a complicated

nonlinear mapping between high-dimensional vectors, was employed as a regression

function from these signals to the optimal RES gain. This method demonstrated im-

proved speech quality and echo suppression performance compared with the simple

ANN-based residual echo suppression [18].

Inspired by [56], in this chapter, we propose a novel approach in DNN framework

for nonlinear acoustic echo suppression (NAES). Similar to residual gain estimation

for nonlinear components, the proposed algorithm can directly enhance the input

signal by applying the gain estimation based on DNNs which have the capability

to automatically learn an arbitrary unknown mapping from the input to the target

values. However, the architectures may be impossible to track the nonlinear echo

signal in the various environments or room impulse responses (RIRs) because their

networks are fixed on the contrary to adaptive filters. To compensate this weakness,

additional inputs for echo information such as a priori and a posteriori signal-to-echo

ratio (SER) are used in the DNN and this process is called echo aware training. Also,

we introduce the multi-task learning (MTL) [57]–[60] to improve the gain estimates.

In the MTL framework, related works are jointly trained with shared hidden layers

to improve the generalization power of each task. In the proposed technique, the

primary task of the gain estimation for NAES is jointly trained with an additional

task of double-talk detection. Therefore, the proposed method makes the DNN be

more robust in unseen conditions. Experimental results show that the proposed
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method outperformed the conventional one, especially in double-talk situations.

5.2 DNN-based Nonlinear Acoustic Echo Suppression

using Echo Aware Training

To remove nonlinear acoustic echo components in various environments, several

echo cancellation methods have been researched over the last decades [19]–[27], [53],

[54]. One of the well-known NAEC approaches is an adaptive Volterra filtering which

can be viewed as a generalization of linear adaptive filters. In the past, various al-

gorithms based on the Volterra filter were proposed to describe the characteristics

of nonlinear echo and showed the better performance than the conventional linear

filtering [19]–[26]. However, the performance might be not satisfied for hearing or

using nonlinear echo-removed signal as features of other applications since these algo-

rithms could not consider the full correlation for the nonlinear relationship between

the input signal and far-end signal in time-frequency domain.

In speech recognition and enhancement areas, deep neural network (DNN) struc-

tures have been employed as a powerful tool to find the complicated mapping or

functions and shown better performance than other conventional methods [47]–[49].

Recently, a DNN-based residual echo suppression (RES) was proposed to reduce the

nonlinearity and the work has shown that its performance was more improved than

the conventional ANN-based one [56]. Extending the scheme, we propose a novel

DNN-based approach for NAES. Instead of estimating the residual gain for sup-

pressing the nonlinear echo components, the proposed algorithm straightforwardly

recovers the near-end speech signal through the direct gain estimation obtained from

DNN frameworks on the input and far-end signal. However, DNN structures may be
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Figure 5.1: The proposed echo aware DNN structure with multi-task learning on

double-talk detection for nonlinear acoustic echo suppression.

difficult to track the nonlinear echo signal in the various environments or room im-

pulse responses (RIRs) because their networks cannot be changed in the test phase

unlike the conventional NAEC or NAES based on adaptive filters.

Recent works have shown that the performance of DNN-based techniques can

be improved by introducing the auxiliary information as other inputs which are ex-

tracted from the various environments or signals. Several DNN algorithms based on

noise or room aware training have been widely used for speech recognition [57] or

73



speaker adaptation [61]. In noise aware training, the estimates of the additive noise

corrupting the utterance were employed to improve the performance [57]. Room

awareness information estimated in the speech signal was also used to work for

dereverberation [61]. Similarly, in order to compensate the weakness of DNN-based

NAES that the performance of the DNN system may be degraded in unseen and

mismatched conditions, echo aware information is introduced as supplementary in-

put in the proposed algorithm. In Fig. 5.1, it is found that input signals for DNN

are not only microphone signal and far-end signal but also echo information. In this

work, we focus on the signal-to-echo ratio (SER) information. The SER features

such as a priori and a posteriori SERs are the well-known information for AES task

and suitable things for tracking the change of echo signal or RIRs. Especially, the

echo information can be used for implicit double-talk detectors in each frequency

bins. A priori SER ξ(n, k) and a posteriori SER γ(n, k) can be defined as

ξ(n, k) ,
λS(n, k)

λD(n, k)
, (5.1)

γ(n, k) ,
|Y (n, k)|2

λD(n, k)
(5.2)

where λS(n, k) and λD(n, k) denote the power spectral densities (PSDs) of the near-

end signal and nonlinear echo, respectively. |Y (n, k)| is the magnitude of the micro-

phone input and n and k are the n-th frame index and k-th frequency bin in short-

time Fourier transform (STFT) domain. The echo information can be obtained by

applying the conventional AES approaches or training a DNN. In this work, one of

the former methods was used for collecting the echo information. This approach [56]

is based on decision-directed method for AES. Since the SER features are estimated

per each frequency bin, we consider the a 2 × (N/2 + 1)-dimensional vector per

frame as an additional input when taking the N -point STFT. Additionally, their
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logarithms were finally taken for reducing the dynamic range of the SER values.

The magnitude spectra of the far-end signal and the microphone input and the SER

information in all frequency bins over T successive frames are fed to the input layer.

These features are normalized to have zero mean and unit variance. The output is

the gain vector in the current frame. Each hidden layer consists of binary units and

the logistic sigmoid function is applied as nonlinear activation of the units.

Similar to the previous work [56], the optimal gain Gopt(n, k) for NAES which

is called phase-sensitive gain [62] is adopted and defined as follows

Gopt(n, k) = <
(
S(n, k)

Y (n, k)

)
=
|S(n, k)|
|Y (n, k)|

cos(θS − θY ) (5.3)

where θS and θY denote the phase of the near-end speech and the phase of the

microphone input, respectively. The gain is confined to the finite range (0,1) and

the output of a sigmoid function is used as the activation function in the output

layer. The phase-sensitive gain based on the error in the complex spectrum, which

includes both amplitude and phase error may compensate for the use of the noisy

phase.

5.3 Multi-Task Learning for NAES

In this section, we propose to combine a multi-task learning with the DNN-

based NAES incorporating echo aware training for robust NAES. Generally, in the

multi-task learning, the DNN model with shared hidden layers can be trained by

performing several related tasks simultaneously. The advantage of the multi-task

learning is that the information or representations obtained from one task may be
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helpful for solving other tasks, and vice versa. Thus, multi-task learning allows to

find internal information which cannot be discovered by training the model on each

isolated task. Actually, through echo aware training, the DNN can learn the improved

nonlinear mapping between the input features including the SER information and

the gain estimates for NAES. However, the DNN may have difficulties in estimating

the NAES gain estimates when there exists various mismatched conditions such as

different devices or room environments.

In the proposed work, we introduce the multi-task learning technique which

combines the gain estimation as the primary task with a double-talk detection as an

additional task during the DNN training phase. The proposed approach is illustrated

in Fig. 5.1. The main task in the left part of the DNN is to minimize the squared error

between the optimal gain and the estimate gain which are corrupted by nonlinear

echo. The objective function for this task is formulated by

Jprimary =
∑
n

∑
k

[Gopt(n, k)−Gest(n, k)]2 (5.4)

where Gest denotes the gain obtained from the NAES based on DNN. The right

part of the network is treated as an additional DNN to classify as single-talk or

double-talk period using cross entropy function. The second objective function for

the binary classification can be defined as

Jadditional =
∑
n

∑
i

(−yi(n) log y′i(n)) (5.5)

where i denotes i-th class and yi and y′i is the true and the estimated value. Thus

y1 = 1 and y0 = 0 when i = 1 and i = 0 are double-talk and single-talk, respectively.

The softmax function is used for the output activation. Using (5.4) and (5.4), the
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final objective function for multi-task learning is given by

J = λJprimary + (1− λ)Jadditional

= λ
∑
n

∑
k

[Gopt(n, k)−Gest(n, k)]2 + (1− λ)
∑
n

∑
i

(−yi(n) log y′i(n)) (5.6)

where λ is the weight parameter between the gain estimation and double-talk detec-

tion tasks. In this architecture, a single hidden layer for each task is used and the two

lower hidden layers are shared for multi-task learning. The activation function in the

hidden layers is sigmoid. Similar to the conventional DNN approaches, the DNN is

trained by passing through the pre-training and fine-tuning. To initialize the DNN,

we pre-train a model built by stacking restricted Boltzmann machines (RBMs) [49]

which is layer-wise unsupervised learning algorithm. Then, in the fine-tuning phase,

the objective function (5.6) is applied on the DNN training.

Since the DNN-based NAES does not have any explicit double-talk detectors,

the estimation of the NAES gain may be inaccurate in double-talk intervals. The

information extracted from the subsidiary task may help to make the DNN be robust

in this case. In other words, the network can learn the good representations which

can suppress more in single-talk periods and improve the gain estimates in double-

talk periods through the double-talk detection task. Another advantage of multi-task

learning is that the DNN for the additional task is used only for training phase, so

it can be discarded during the test phase. Thus, the complexity of the DNN does

not increase during the test and the same processes without multi-task learning for

recovering the near-end speech can be applied on the multi-task learning framework.
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5.4 Experimental Results

To evaluate the performance of the proposed method, we conducted several ex-

periments under real environments. From the TIMIT database, we created 150 files

as the far-end signals of which 100 files were used for training while the other 50

files were used for the test. These files were sampled at 16 kHz. To record nonlinear

echo signal in real conditions, we prepared 3 mobile devices (M1, M2, M3) and 2

room environments (R1, R2). The recording conditions are represented in Table. 5.1.

The dimension of the first room is 5.30× 4.30× 2.35 m3 and the reverberation time

T60 in the room is about 200 ms. The second room was designed with dimensions

8.09× 5.21× 2.70 m3 and its reverberation time T60 ≈ 382 ms. For double-talk situ-

ation, the near-end speech is mixed with the recording echo data and the echo level

measured at the microphone was on average 3.5 dB lower than that of the speech

signal. For performance evaluation, the echo return loss enhancement (ERLE), the

perceptual evaluation of speech quality (PESQ) [41], the ERLE in double-talk pe-

riods (DT) and the segmental speech-to-speech distortion ration (SSDR) [63] were

used as objective measures. The ERLE is defined by

ERLE(n) = 10 log10

[
E[y2(n)]

E[ê2(n)]

]
(dB). (5.7)

where y(n) and ê(n) denote the microphone input and the residual echo, respectively.

The segmental SSDR is formulated as

SSDRseg =
1

C(Λ)

∑
l∈Λ

[
10 log10

ΣK
k=1S

2
l (k)

ΣK
k=1(Ŝl(k)− Sl(k))2

]
(dB) (5.8)

where the term C(Λ) is the number of elements in set Λ representing a subset

with speech being present and Ŝl(k) and Sl(k) denote the enhanced and the clean

speech, respectively. Since the amplifier and loudspeaker in the mobile devices were
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Table 5.1: The recording conditions for training and test DB (mobile devices = {M1,

M2, M3} and room environments = {R1, R2}).

Dataset Conditions

Training (M1,R1), (M1,R2), (M2,R2)

Test (M1,R1), (M2,R1), (M3,R2)

so cheap, we expected the recorded echo signal to be nonlinear enough and found

that the AES [56] yields the average ERLE of about 8 dB which is limited by the

high level of nonlinear distortion.

First, the conventional NAES algorithm [56] was applied to the whole data set.

The AES algorithm was slightly modified so that it fitted to single channel AES and

the nonlinear RES was based on DNN in which each hidden and the output layer

had 2048 and 129 units. The same parameters values and training processes were

used as in [56] and the training dataset was used in Table. 5.1.

In the proposed algorithm, the frame length was set to 512 samples with 50%

overlap, and a 512-point STFT was applied to each frame. Each hidden and the

output layer had 2048 and 257 units, respectively. The input vector included the

current frame, the previous two frames and the two estimated SERs in the current

frame. The dimension of the vector becomes 1799. For multi-task learning, we fixed

the weighted value λ to 0.9. In the pre-training for each task, the number of epochs

for the RBM in each layer was 20 and the learning rate was 0.0005. In the fine-

tuning for the main task, the learning rate was set to 0.1 for the first 10 epochs,

then decreased by 2% after each epoch. In the case of the additional task, the learning
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Table 5.2: ERLE and PESQ scores obtained with the matched and mismatched

conditions.

Measure Condition AES + RES (DNN) DNN EAT DNN EAT MTL

ERLE

(M1, R1) 37.10 43.94 44.59

(M2, R1) 34.93 41.30 42.28

(M3, R2) 30.03 39.20 39.25

PESQ

(M1, R1) 3.12 3.34 3.41

(M2, R1) 3.11 3.28 3.35

(M3, R2) 2.95 3.12 3.16

rate for 3rd hidden layer was set to 0.01 for the first 10 epochs, then decreased by

12.5% after each epoch. Total iteration number was 100 and the mini-batch size M

was set to 128. For the tests, we used the test sets in Table. 5.1. We used the two sets

in each test condition, which consist of the one set recorded for single-talk periods

and the other copy made for double-talk periods.

In Table. 5.2, the overall results of the ERLEs for single-talk periods and PESQ

scores for double-talk periods. The matched condition is (M1, R1) and the mis-

matched conditions are (M2, R1) and (M3, R2) for device mismatch. DNN EAT

is the DNN-based NAES using echo aware training (EAT) and DNN EAT MTL

is the DNN EAT with multi-task learning using double-talk task. The proposed

method outperformed the conventional NAES. The proposed NAES on EAT im-

proved both ERLE and PESQ scores compared with the conventional one and the

DNN EAT MTL showed slightly better results in double-talk cases than DNN EAT.
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Table 5.3: ERLE in double-talk (DT) and segmental SSDR obtained with the

matched and mismatched conditions.

Measure Condition AES + RES (DNN) DNN EAT DNN EAT MTL

ERLE in DT

(M1, R1) 3.58 4.45 4.85

(M2, R1) 3.92 4.43 4.51

(M3, R2) 3.38 4.08 4.11

SSDRseg

(M1, R1) 18.07 19.35 19.84

(M2, R1) 16.17 17.45 17.96

(M3, R2) 16.87 17.89 18.21

The proposed SER features for temporal dynamics and the additional task for

double-talk detection may be helpful to improve the suppression of nonlinear echo. It

is noted that through the results of the mismatched condition (M3, R2), the device

mismatch which can make the nonlinearity in echo signal may be critical to improve

the performance of NAES.

To evaluate the specific performance in double-talk periods, the results of ERLE

in DT and segmental SSDR are represented in Table. 5.3. As expected, the pro-

posed methods showed better performance than the combination of the AES and

the DNN-based RES techniques. From the results, we concluded that DNN EAT

and DNN EAT MTL can remove the nonlinearity of echo and recover the near-end

speech well in real conditions.

Fig. 5.2 shows that evolution of the ERLE over time in conjunction with the cor-

responding unprocessed echo waveform. The proposed method is DNN EAT MTL.
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Figure 5.2: Comparison of ERLE in a single-talk situation of the mismatched con-

dition (M3, R2).

The proposed algorithm attenuated the echo signal including nonlinear components

more effectively than the conventional method. From Fig. 5.3 to Fig. 5.6, the wave-

forms and spectrograms are illustrated for checking echo suppression performance

and the improvement of speech recovery. Consequently, DNN EAT MTL preserved

the near-end speech better compared to the conventional method.

5.5 Summary

In this chapter, we proposed a novel DNN-based NAES approach using echo

aware training and multi-task learning framework. The proposed algorithm can di-
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rectly estimate the NAES optimal gain based on DNNs and the echo information

such as a priori and a posteriori signal-to-echo ratio (SER) was used in the DNN.

Also, we introduced the multi-task learning to improve the gain estimates in various

conditions. In the framework, the main task of the gain estimation for NAES was

jointly trained with an additional task of double-talk detection. Experimental results

showed that the proposed method outperformed the conventional one, especially in

double-talk situations.
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Figure 5.3: Waveforms for the double-talk case in the matched case (M1, R1). (a)

clean near-end speech, (b) microphone signal, (c) output of AES (d) output of AES

+ RES (DNN) and (e) output of DNN EAT MTL.
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Figure 5.4: Spectrograms for the double-talk case in the matched case (M1, R1). (a)

clean near-end speech, (b) microphone signal, (c) output of AES (d) output of AES

+ RES (DNN) and (e) output of DNN EAT MTL.
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Figure 5.5: Waveforms for the double-talk case in the mismatched case (M3, R2).

(a) clean near-end speech, (b) microphone signal, (c) output of AES (d) output of

AES + RES (DNN) and (e) output of DNN EAT MTL.
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Figure 5.6: Spectrograms for the double-talk case in the mismatched case (M3, R2).

(a) clean near-end speech, (b) microphone signal, (c) output of AES (d) output of

AES + RES (DNN) and (e) output of DNN EAT MTL.
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Chapter 6

Conclusions

In this thesis, three major approaches based on spectro-temporal correlations

have been proposed for acoustic echo suppression. Even though many algorithms for

acoustic echo cancellation and suppression have been proposed to solve the acoustic

echo problem and produced some successful results in telecommunication systems

during the last few decades, acoustic echo cancellation and suppression are still

the major topics to transmit clear speech in full-duplex telecommunication systems.

Especially, the non-uniqueness problem in stereophonic acoustic echo cancellation

or the nonlinearity generated from cheap loudspeakers and amplifiers in echo signal

should be overcome to both suppress the nonlinear echo and recover the near-end

speech. Therefore, we have focused on the exact methods for echo representation

based on cross-filtering and deep neural networks.

First, we have proposed the enhanced stereophonic AES algorithm using aug-

mented vectors in order to incorporate spectral and temporal correlations. The

approach takes advantage of the correlations among components in adjacent time

frames and frequency bins in the STFT domain since a linear system can be mod-
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eled more accurately through the correlations. To estimate the stereo echo signal,

the extended PSD matrices and cross-PSD vectors are derived by using supervectors

augmented with the adjacent components from the signal statistics. Experimental

results demonstrated that the proposed method is superior to conventional SAES in

terms of both ERLE and PESQ.

Second, an optimal residual echo suppression gain regression employing DNN

has been proposed in single channel case. The DNN could represent the complicated

mapping from the AES output and far-end signal in the whole frequency bins to

RES gains. Furthermore, the proposed method does not need any explicit double-

talk detectors as the DNN can accommodate the mapping for both single-talk and

double-talk cases. The proposed RES algorithm outperformed the conventional one

in terms of various objective measures in matched and mismatched conditions for

various RIRs, SER, clipping type, and level of nonlinearity in loudspeaker.

Finally, we have proposed a novel DNN-based NAES approach based on echo

aware training and multi-task learning framework. The proposed algorithm can di-

rectly attempt the NAES gain estimation based on DNNs and the echo information

such as a priori and a posteriori signal-to-echo ratio (SER) has been introduced

as additional features in the DNN. Also, we have combined the multi-task learning

to improve the gain estimates in various conditions. In the framework, the main

task of the gain estimation for NAES was jointly trained with an additional task

of double-talk detection. Experimental results showed that the proposed method

outperformed the conventional one, especially in double-talk situations.
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요 약

음향학적 에코로 인해 신호가 왜곡되는 것을 방지하기 위해 음향학적 에코 제거

및 억제 기법들의 적용은 필수적이다. 특히 양방향 전화통신 시스템이 급속히 확산되

면서 에코 제거 기법들은 보다 빠르고 신뢰성 있는 알고리즘을 필요로 하였으며 이와

관련하여 오랫동안 연구가 이뤄졌다. 대부분의 음향학적 에코 제거 기법은 적응 필터

를 기반으로 하지만 충분한 성능을 얻기 위해서는 길이가 긴 필터가 요구되며 선형

요소들만을 주로 고려할 수 있다는 점에서 한계를 지닌다.

본 논문에서는 음향학적 억제 기법을 활용하여 음향학적 에코로 인해 왜곡된 신

호를 복원하고 에코를 효과적으로 감소시킬 수 있는 방법들을 제시한다. 첫 번째로,

short-time Fourier transform (STFT) 영역에서 주파수 및 시간적 상관관계를 고려하

여 스테레오 환경에서 발생하는 음향학적 에코를 제거하는 기법을 제안한다. 기존의

방법들과 달리, 신호를 비상관관계로 만드는 과정이 필요하지 않고 인접한 주파수 및

시간 요소들이 가지는 상호 관계를 고려하여 보다 정확한 에코 추정을 시도한다. 특히

기존 이중 통화 검출기가 없이 신호 대 에코비 (signal-to-echo ratio, SER) 정보만으로

에코 억제가 가능한 특징을 지닌다.

두 번째로, 비선형 환경에서 발생하는 음향학적 에코 성분 안의 비선형 요소 등을

억제하기 위한 방안으로 심층 신경망을 활용하는 잔여 에코 억제를 제안하였다. 일반

적으로 스피커나 앰프가 가지는 비선형성은 음향학적 에코와 원본 신호 간의 관계를

복잡하게 만들어 간단한 선형 시스템 가정만으로는 충분한 에코 제거를 수행할 수 없
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다. 따라서 주로 비선형 요소들로 이뤄진 잔여 에코를 억제하기 위해서 신경 심층망을

기반으로 하는 잔여 에코 억제 이득을 추정하는 기법을 제안했다. 심층 신경망은 선형

알고리즘으로는 모델링하기 어려운 복잡한 비선형 관계를 학습하기 용이하기 때문에

잔여 에코와 잔여 에코 억제 이득 간의 관계를 추정하기 쉽고 인접한 프레임과 한 프

레임 내의 전체 주파수 요소를 모두 고려하는 입력을 사용함으로써 주파수 및 시간적

상관관계를 모두 고려할 수 있다. 단일 및 이중 통화 환경을 모두 고려하는 학습을 통해

동시 통화 검출 없이 동작하는 장점 또한 지닌다.

세 번째로, 비선형적 환경에서의 음향학적 에코 억제를 심층 신경망 학습으로 잔

여 에코 억제 과정 없이 수행하기 위해 에코 억제 환경에 맞는 에코 어웨어 학습 (echo

aware training)과이중통화검출정보를활용한멀티태스크학습 (multi-task learning)

을 제안하였다. 에코 어웨어 학습 과정에서는 심층 신경망으로 음향학적 에코 제거를

바로 시도할 경우 방이나 공간 환경, 에코 변화 등을 추정하기 어려울 수 있기 때문에

이를 보조할 특징 벡터를 이용하여 학습을 도운다. 이 특징 벡터는 사전 및 사후 SER

정보를 이용하며 기존의 에코 억제 알고리즘이나 심층 신경망을 통해 추정할 수 있다.

추가적으로 음향학적 에코 이득 추정을 개선하기 위해 이중 통화 검출 과정을 별도의

태스크로 만들어 기존 이득 추정 태스크와 함께 학습시키는 멀티태스크 학습을 제안한

다. 이렇게 학습된 심층 신경망은 단일 통화 구간에서는 에코를 더 억제할 수 있고 이중

통화 구간에서는 음성 신호 향상에 도움을 주는 내부적인 은닉 신경망으로 구성된다.

또한 제안한 기법으로 학습된 심층 신경망은 다양한 환경에서 보다 강인할 가능성을

지닌다.

주요어: 음향학적 에코 억제, 주파수 및 시간적 상관관계, 잔여 에코 억제, 심층 신경

망 (deep neural network), 에코 어웨어 학습 (echo aware training), 멀티태스크

학습 (multi-task learning)
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