699 research outputs found

    A Formal Framework for Speedup Learning from Problems and Solutions

    Full text link
    Speedup learning seeks to improve the computational efficiency of problem solving with experience. In this paper, we develop a formal framework for learning efficient problem solving from random problems and their solutions. We apply this framework to two different representations of learned knowledge, namely control rules and macro-operators, and prove theorems that identify sufficient conditions for learning in each representation. Our proofs are constructive in that they are accompanied with learning algorithms. Our framework captures both empirical and explanation-based speedup learning in a unified fashion. We illustrate our framework with implementations in two domains: symbolic integration and Eight Puzzle. This work integrates many strands of experimental and theoretical work in machine learning, including empirical learning of control rules, macro-operator learning, Explanation-Based Learning (EBL), and Probably Approximately Correct (PAC) Learning.Comment: See http://www.jair.org/ for any accompanying file

    Learning to improve iterative repair scheduling

    Get PDF
    This paper presents a general learning method for dynamically selecting between repair heuristics in an iterative repair scheduling system. The system employs a version of explanation-based learning called Plausible Explanation-Based Learning (PEBL) that uses multiple examples to confirm conjectured explanations. The basic approach is to conjecture contradictions between a heuristic and statistics that measure the quality of the heuristic. When these contradictions are confirmed, a different heuristic is selected. To motivate the utility of this approach we present an empirical evaluation of the performance of a scheduling system with respect to two different repair strategies. We show that the scheduler that learns to choose between the heuristics outperforms the same scheduler with any one of two heuristics alone

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    Machine Learning Techniques in Optimal Design

    Get PDF
    Many important applications can be formalized as constrained optimization tasks. For example, we are studying the engineering domain of two-dimensional (2-D) structural design. In this task, the goal is to design a structure of minimum weight that bears a set of loads. A solution to a design problem in which there is a single load (L) and two stationary support points (S1 and S2) consists of four members, E1, E2, E3, and E4 that connect the load to the support points is discussed. In principle, optimal solutions to problems of this kind can be found by numerical optimization techniques. However, in practice [Vanderplaats, 1984] these methods are slow and they can produce different local solutions whose quality (ratio to the global optimum) varies with the choice of starting points. Hence, their applicability to real-world problems is severely restricted. To overcome these limitations, we propose to augment numerical optimization by first performing a symbolic compilation stage to produce: (a) objective functions that are faster to evaluate and that depend less on the choice of the starting point and (b) selection rules that associate problem instances to a set of recommended solutions. These goals are accomplished by successive specializations of the problem class and of the associated objective functions. In the end, this process reduces the problem to a collection of independent functions that are fast to evaluate, that can be differentiated symbolically, and that represent smaller regions of the overall search space. However, the specialization process can produce a large number of sub-problems. This is overcome by deriving inductively selection rules which associate problems to small sets of specialized independent sub-problems. Each set of candidate solutions is chosen to minimize a cost function which expresses the tradeoff between the quality of the solution that can be obtained from the sub-problem and the time it takes to produce it. The overall solution to the problem, is then obtained by solving in parallel each of the sub-problems in the set and computing the one with the minimum cost. In addition to speeding up the optimization process, our use of learning methods also relieves the expert from the burden of identifying rules that exactly pinpoint optimal candidate sub-problems. In real engineering tasks it is usually too costly to the engineers to derive such rules. Therefore, this paper also contributes to a further step towards the solution of the knowledge acquisition bottleneck [Feigenbaum, 1977] which has somewhat impaired the construction of rulebased expert systems

    Building and Refining Abstract Planning Cases by Change of Representation Language

    Full text link
    ion is one of the most promising approaches to improve the performance of problem solvers. In several domains abstraction by dropping sentences of a domain description -- as used in most hierarchical planners -- has proven useful. In this paper we present examples which illustrate significant drawbacks of abstraction by dropping sentences. To overcome these drawbacks, we propose a more general view of abstraction involving the change of representation language. We have developed a new abstraction methodology and a related sound and complete learning algorithm that allows the complete change of representation language of planning cases from concrete to abstract. However, to achieve a powerful change of the representation language, the abstract language itself as well as rules which describe admissible ways of abstracting states must be provided in the domain model. This new abstraction approach is the core of Paris (Plan Abstraction and Refinement in an Integrated System), a system in which abstract planning cases are automatically learned from given concrete cases. An empirical study in the domain of process planning in mechanical engineering shows significant advantages of the proposed reasoning from abstract cases over classical hierarchical planning.Comment: See http://www.jair.org/ for an online appendix and other files accompanying this articl

    A foundation for machine learning in design

    Get PDF
    This paper presents a formalism for considering the issues of learning in design. A foundation for machine learning in design (MLinD) is defined so as to provide answers to basic questions on learning in design, such as, "What types of knowledge can be learnt?", "How does learning occur?", and "When does learning occur?". Five main elements of MLinD are presented as the input knowledge, knowledge transformers, output knowledge, goals/reasons for learning, and learning triggers. Using this foundation, published systems in MLinD were reviewed. The systematic review presents a basis for validating the presented foundation. The paper concludes that there is considerable work to be carried out in order to fully formalize the foundation of MLinD
    • …
    corecore