4 research outputs found

    A Formal Framework for Speedup Learning from Problems and Solutions

    Full text link
    Speedup learning seeks to improve the computational efficiency of problem solving with experience. In this paper, we develop a formal framework for learning efficient problem solving from random problems and their solutions. We apply this framework to two different representations of learned knowledge, namely control rules and macro-operators, and prove theorems that identify sufficient conditions for learning in each representation. Our proofs are constructive in that they are accompanied with learning algorithms. Our framework captures both empirical and explanation-based speedup learning in a unified fashion. We illustrate our framework with implementations in two domains: symbolic integration and Eight Puzzle. This work integrates many strands of experimental and theoretical work in machine learning, including empirical learning of control rules, macro-operator learning, Explanation-Based Learning (EBL), and Probably Approximately Correct (PAC) Learning.Comment: See http://www.jair.org/ for any accompanying file

    A Statistical Approach to Solving the EBL Utility Problem

    No full text
    Many "learning from experience" systems use information extracted from problem solving experiences to modify a performance element PE, forming a new element PE 0 that can solve these and similar problems more efficiently. However, as transformations that improve performance on one set of problems can degrade performance on other sets, the new PE 0 is not always better than the original PE; this depends on the distribution of problems. We therefore seek the performance element whose expected performance, over this distribution, is optimal. Unfortunately, the actual distribution, which is needed to determine which element is optimal, is usually not known. Moreover, the task of finding the optimal element, even knowing the distribution, is intractable for most interesting spaces of elements. This paper presents a method, palo, that side-steps these problems by using a set of samples to estimate the unknown distribution, and by using a set of transformations to hill-climb to a local o..
    corecore