2,433 research outputs found

    A fast and light stream cipher for smartphones

    Full text link
    We present a stream cipher based on a chaotic dynamical system. Using a chaotic trajectory sampled under certain rules in order to avoid any attempt to reconstruct the original one, we create a binary pseudo-random keystream that can only be exactly reproduced by someone that has fully knowledge of the communication system parameters formed by a transmitter and a receiver and sharing the same initial conditions. The plaintext is XORed with the keystream creating the ciphertext, the encrypted message. This keystream passes the NISTs randomness test and has been implemented in a videoconference App for smartphones, in order to show the fast and light nature of the proposed encryption system

    Quantum Noise Randomized Ciphers

    Full text link
    We review the notion of a classical random cipher and its advantages. We sharpen the usual description of random ciphers to a particular mathematical characterization suggested by the salient feature responsible for their increased security. We describe a concrete system known as AlphaEta and show that it is equivalent to a random cipher in which the required randomization is effected by coherent-state quantum noise. We describe the currently known security features of AlphaEta and similar systems, including lower bounds on the unicity distances against ciphertext-only and known-plaintext attacks. We show how AlphaEta used in conjunction with any standard stream cipher such as AES (Advanced Encryption Standard) provides an additional, qualitatively different layer of security from physical encryption against known-plaintext attacks on the key. We refute some claims in the literature that AlphaEta is equivalent to a non-random stream cipher.Comment: Accepted for publication in Phys. Rev. A; Discussion augmented and re-organized; Section 5 contains a detailed response to 'T. Nishioka, T. Hasegawa, H. Ishizuka, K. Imafuku, H. Imai: Phys. Lett. A 327 (2004) 28-32 /quant-ph/0310168' & 'T. Nishioka, T. Hasegawa, H. Ishizuka, K. Imafuku, H. Imai: Phys. Lett. A 346 (2005) 7

    MV3: A new word based stream cipher using rapid mixing and revolving buffers

    Full text link
    MV3 is a new word based stream cipher for encrypting long streams of data. A direct adaptation of a byte based cipher such as RC4 into a 32- or 64-bit word version will obviously need vast amounts of memory. This scaling issue necessitates a look for new components and principles, as well as mathematical analysis to justify their use. Our approach, like RC4's, is based on rapidly mixing random walks on directed graphs (that is, walks which reach a random state quickly, from any starting point). We begin with some well understood walks, and then introduce nonlinearity in their steps in order to improve security and show long term statistical correlations are negligible. To minimize the short term correlations, as well as to deter attacks using equations involving successive outputs, we provide a method for sequencing the outputs derived from the walk using three revolving buffers. The cipher is fast -- it runs at a speed of less than 5 cycles per byte on a Pentium IV processor. A word based cipher needs to output more bits per step, which exposes more correlations for attacks. Moreover we seek simplicity of construction and transparent analysis. To meet these requirements, we use a larger state and claim security corresponding to only a fraction of it. Our design is for an adequately secure word-based cipher; our very preliminary estimate puts the security close to exhaustive search for keys of size < 256 bits.Comment: 27 pages, shortened version will appear in "Topics in Cryptology - CT-RSA 2007

    Comparison analysis of stream cipher algorithms for digital communication

    Get PDF
    The broadcast nature of radio communication such as in the HF (High Frequency) spectrum exposes the transmitted information to unauthorized third parties. Confidentiality is ensured by employing cipher system. For bulk transmission of data, stream ciphers are ideal choices over block ciphers due to faster implementation speed and not introducing error propagation. The stream cipher algorithms evaluated are based on the linear feedback shift register (LFSR) with nonlinear combining function. By using a common key length and worst case conditions, the strength of several stream cipher algorithms are evaluated using statistical tests, correlation attack, linear complexity profile and nonstandard test. The best algorithm is the one that exceeds all of the tests
    corecore