281 research outputs found

    Combining Boundary-Conforming Finite Element Meshes on Moving Domains Using a Sliding Mesh Approach

    Full text link
    For most finite element simulations, boundary-conforming meshes have significant advantages in terms of accuracy or efficiency. This is particularly true for complex domains. However, with increased complexity of the domain, generating a boundary-conforming mesh becomes more difficult and time consuming. One might therefore decide to resort to an approach where individual boundary-conforming meshes are pieced together in a modular fashion to form a larger domain. This paper presents a stabilized finite element formulation for fluid and temperature equations on sliding meshes. It couples the solution fields of multiple subdomains whose boundaries slide along each other on common interfaces. Thus, the method allows to use highly tuned boundary-conforming meshes for each subdomain that are only coupled at the overlapping boundary interfaces. In contrast to standard overlapping or fictitious domain methods the coupling is broken down to few interfaces with reduced geometric dimension. The formulation consists of the following key ingredients: the coupling of the solution fields on the overlapping surfaces is imposed weakly using a stabilized version of Nitsche's method. It ensures mass and energy conservation at the common interfaces. Additionally, we allow to impose weak Dirichlet boundary conditions at the non-overlapping parts of the interfaces. We present a detailed numerical study for the resulting stabilized formulation. It shows optimal convergence behavior for both Newtonian and generalized Newtonian material models. Simulations of flow of plastic melt inside single-screw as well as twin-screw extruders demonstrate the applicability of the method to complex and relevant industrial applications

    An unfitted Nitsche method for incompressible fluid-structure interaction using overlapping meshes

    Get PDF
    We consider the extension of the Nitsche method to the case of fluid–structure interaction problems on unfitted meshes. We give a stability analysis for the space semi-discretized problem and show how this estimate may be used to derive optimal error estimates for smooth solutions,irrespectively of the mesh/interface intersection. We also discuss different strategies for the time discretization, using either fully implicit or explicit coupling (loosely coupled) schemes. Some numerical examples illustrate the theoretical discussion

    A CutFEM method for two-phase flow problems

    Full text link
    In this article, we present a cut finite element method for two-phase Navier-Stokes flows. The main feature of the method is the formulation of a unified continuous interior penalty stabilisation approach for, on the one hand, stabilising advection and the pressure-velocity coupling and, on the other hand, stabilising the cut region. The accuracy of the algorithm is enhanced by the development of extended fictitious domains to guarantee a well defined velocity from previous time steps in the current geometry. Finally, the robustness of the moving-interface algorithm is further improved by the introduction of a curvature smoothing technique that reduces spurious velocities. The algorithm is shown to perform remarkably well for low capillary number flows, and is a first step towards flexible and robust CutFEM algorithms for the simulation of microfluidic devices
    • …
    corecore