280 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    D4.3 Final Report on Network-Level Solutions

    Full text link
    Research activities in METIS reported in this document focus on proposing solutions to the network-level challenges of future wireless communication networks. Thereby, a large variety of scenarios is considered and a set of technical concepts is proposed to serve the needs envisioned for the 2020 and beyond. This document provides the final findings on several network-level aspects and groups of solutions that are considered essential for designing future 5G solutions. Specifically, it elaborates on: -Interference management and resource allocation schemes -Mobility management and robustness enhancements -Context aware approaches -D2D and V2X mechanisms -Technology components focused on clustering -Dynamic reconfiguration enablers These novel network-level technology concepts are evaluated against requirements defined by METIS for future 5G systems. Moreover, functional enablers which can support the solutions mentioned aboveare proposed. We find that the network level solutions and technology components developed during the course of METIS complement the lower layer technology components and thereby effectively contribute to meeting 5G requirements and targets.Aydin, O.; Valentin, S.; Ren, Z.; Botsov, M.; Lakshmana, TR.; Sui, Y.; Sun, W.... (2015). D4.3 Final Report on Network-Level Solutions. http://hdl.handle.net/10251/7675

    Allocation of Communication and Computation Resources in Mobile Networks

    Get PDF
    Konvergence komunikačních a výpočetních technologií vedlo k vzniku Multi-Access Edge Computing (MEC). MEC poskytuje výpočetní výkon na tzv. hraně mobilních sítí (základnové stanice, jádro mobilní sítě), který lze využít pro optimalizaci mobilních sítí v reálném čase. Optimalizacev reálném čase je umožněna díky nízkému komunikačnímu zpoždění například v porovnání s Mobile Cloud Computing (MCC). Optimalizace mobilních sítí vyžaduje informace o mobilní síti od uživatelských zařízeních, avšak sběr těchto informací využívá komunikační prostředky, které jsou využívány i pro přenos uživatelských dat. Zvyšující se počet uživatelských zařízení, senzorů a taktéž komunikace vozidel tvoří překážku pro sběr informací o mobilních sítích z důvodu omezeného množství komunikačních prostředků. Tudíž je nutné navrhnout řešení, která umožní sběr těchto informací pro potřeby optimalizace mobilních sítí. V této práci je navrženo řešení pro komunikaci vysokého počtu zařízeních, které je postaveno na využití přímé komunikace mezi zařízeními. Pro motivování uživatelů, pro využití přeposílání dat pomocí přímé komunikace mezi uživateli je navrženo přidělování komunikačních prostředků jenž vede na přirozenou spolupráci uživatelů. Dále je provedena analýza spotřeby energie při využití přeposílání dat pomocí přímé komunikace mezi uživateli pro ukázání jejích výhod z pohledu spotřeby energie. Pro další zvýšení počtu komunikujících zařízení je využito mobilních létajících základových stanic (FlyBS). Pro nasazení FlyBS je navržen algoritmus, který hledá pozici FlyBS a asociaci uživatel k FlyBS pro zvýšení spokojenosti uživatelů s poskytovanými datovými propustnostmi. MEC lze využít nejen pro optimalizaci mobilních sítí z pohledu mobilních operátorů, ale taktéž uživateli mobilních sítí. Tito uživatelé mohou využít MEC pro přenost výpočetně náročných úloh z jejich mobilních zařízeních do MEC. Z důvodu mobility uživatel je nutné nalézt vhodně přidělení komunikačních a výpočetních prostředků pro uspokojení uživatelských požadavků. Tudíž je navržen algorithmus pro výběr komunikační cesty mezi uživatelem a MEC, jenž je posléze rozšířen o přidělování výpočetných prostředků společně s komunikačními prostředky. Navržené řešení vede k snížení komunikačního zpoždění o desítky procent.The convergence of communication and computing in the mobile networks has led to an introduction of the Multi-Access Edge Computing (MEC). The MEC combines communication and computing resources at the edge of the mobile network and provides an option to optimize the mobile network in real-time. This is possible due to close proximity of the computation resources in terms of communication delay, in comparison to the Mobile Cloud Computing (MCC). The optimization of the mobile networks requires information about the mobile network and User Equipment (UE). Such information, however, consumes a significant amount of communication resources. The finite communication resources along with the ever increasing number of the UEs and other devices, such as sensors, vehicles pose an obstacle for collecting the required information. Therefore, it is necessary to provide solutions to enable the collection of the required mobile network information from the UEs for the purposes of the mobile network optimization. In this thesis, a solution to enable communication of a large number of devices, exploiting Device-to-Device (D2D) communication for data relaying, is proposed. To motivate the UEs to relay data of other UEs, we propose a resource allocation algorithm that leads to a natural cooperation of the UEs. To show, that the relaying is not only beneficial from the perspective of an increased number of UEs, we provide an analysis of the energy consumed by the D2D communication. To further increase the number of the UEs we exploit a recent concept of the flying base stations (FlyBSs), and we develop a joint algorithm for a positioning of the FlyBS and an association of the UEs to increase the UEs satisfaction with the provided data rates. The MEC can be exploited not only for processing of the collected data to optimize the mobile networks, but also by the mobile users. The mobile users can exploit the MEC for the computation offloading, i.e., transferring the computation from their UEs to the MEC. However, due to the inherent mobility of the UEs, it is necessary to determine communication and computation resource allocation in order to satisfy the UEs requirements. Therefore, we first propose a solution for a selection of the communication path between the UEs and the MEC (communication resource allocation). Then, we also design an algorithm for joint communication and computation resource allocation. The proposed solution then lead to a reduction in the computation offloading delay by tens of percent

    Distributed Artificial Intelligence Solution for D2D Communication in 5G Networks

    Full text link
    Device to Device (D2D) Communication is one of the technology components of the evolving 5G architecture, as it promises improvements in energy efficiency, spectral efficiency, overall system capacity, and higher data rates. The above noted improvements in network performance spearheaded a vast amount of research in D2D, which have identified significant challenges that need to be addressed before realizing their full potential in emerging 5G Networks. Towards this end, this paper proposes the use of a distributed intelligent approach to control the generation of D2D networks. More precisely, the proposed approach uses Belief-Desire-Intention (BDI) intelligent agents with extended capabilities (BDIx) to manage each D2D node independently and autonomously, without the help of the Base Station. The paper includes detailed algorithmic description for the decision of transmission mode, which maximizes the data rate, minimizes the power consumptions, while taking into consideration the computational load. Simulations show the applicability of BDI agents in jointly solving D2D challenges.Comment: 10 pages,9 figure

    D4.2 Final report on trade-off investigations

    Full text link
    Research activities in METIS WP4 include several as pects related to the network-level of future wireless communication networks. Thereby, a large variety of scenarios is considered and solutions are proposed to serve the needs envis ioned for the year 2020 and beyond. This document provides vital findings about several trade-offs that need to be leveraged when designing future network-level solutions. In more detail, it elaborates on the following trade- offs: • Complexity vs. Performance improvement • Centralized vs. Decentralized • Long time-scale vs. Short time-scale • Information Interflow vs. Throughput/Mobility enha ncement • Energy Efficiency vs. Network Coverage and Capacity Outlining the advantages and disadvantages in each trade-off, this document serves as a guideline for the application of different network-level solutions in different situations and therefore greatly assists in the design of future communication network architectures.Aydin, O.; Ren, Z.; Bostov, M.; Lakshmana, TR.; Sui, Y.; Svensson, T.; Sun, W.... (2014). D4.2 Final report on trade-off investigations. http://hdl.handle.net/10251/7676
    corecore