56,327 research outputs found

    Abductive and Consistency-Based Diagnosis Revisited: a Modeling Perspective

    Full text link
    Diagnostic reasoning has been characterized logically as consistency-based reasoning or abductive reasoning. Previous analyses in the literature have shown, on the one hand, that choosing the (in general more restrictive) abductive definition may be appropriate or not, depending on the content of the knowledge base [Console&Torasso91], and, on the other hand, that, depending on the choice of the definition the same knowledge should be expressed in different form [Poole94]. Since in Model-Based Diagnosis a major problem is finding the right way of abstracting the behavior of the system to be modeled, this paper discusses the relation between modeling, and in particular abstraction in the model, and the notion of diagnosis.Comment: 5 pages, 8th Int. Workshop on Nonmonotonic Reasoning, 200

    EEG analytics for early detection of autism spectrum disorder: a data-driven approach

    Get PDF
    Autism spectrum disorder (ASD) is a complex and heterogeneous disorder, diagnosed on the basis of behavioral symptoms during the second year of life or later. Finding scalable biomarkers for early detection is challenging because of the variability in presentation of the disorder and the need for simple measurements that could be implemented routinely during well-baby checkups. EEG is a relatively easy-to-use, low cost brain measurement tool that is being increasingly explored as a potential clinical tool for monitoring atypical brain development. EEG measurements were collected from 99 infants with an older sibling diagnosed with ASD, and 89 low risk controls, beginning at 3 months of age and continuing until 36 months of age. Nonlinear features were computed from EEG signals and used as input to statistical learning methods. Prediction of the clinical diagnostic outcome of ASD or not ASD was highly accurate when using EEG measurements from as early as 3 months of age. Specificity, sensitivity and PPV were high, exceeding 95% at some ages. Prediction of ADOS calibrated severity scores for all infants in the study using only EEG data taken as early as 3 months of age was strongly correlated with the actual measured scores. This suggests that useful digital biomarkers might be extracted from EEG measurements.This research was supported by National Institute of Mental Health (NIMH) grant R21 MH 093753 (to WJB), National Institute on Deafness and Other Communication Disorders (NIDCD) grant R21 DC08647 (to HTF), NIDCD grant R01 DC 10290 (to HTF and CAN) and a grant from the Simons Foundation (to CAN, HTF, and WJB). We are especially grateful to the staff and students who worked on the study and to the families who participated. (R21 MH 093753 - National Institute of Mental Health (NIMH); R21 DC08647 - National Institute on Deafness and Other Communication Disorders (NIDCD); R01 DC 10290 - NIDCD; Simons Foundation)Published versio

    Phenomenology and Dimensional Approaches to Psychiatric Research and Classification

    Get PDF
    Contemporary psychiatry finds itself in the midst of a crisis of classification. The developments begun in the 1980s—with the third edition of the Diagnostic and Statistical Manual of Mental Disorders —successfully increased inter-rater reliability. However, these developments have done little to increase the predictive validity of our categories of disorder. A diagnosis based on DSM categories and criteria often fails to accurately anticipate course of illness or treatment response. In addition, there is little evidence that the DSM categories link up with genetic findings, and even less evidence that they..

    Why study movement variability in autism?

    Get PDF
    Autism has been defined as a disorder of social cognition, interaction and communication where ritualistic, repetitive behaviors are commonly observed. But how should we understand the behavioral and cognitive differences that have been the main focus of so much autism research? Can high-level cognitive processes and behaviors be identified as the core issues people with autism face, or do these characteristics perhaps often rather reflect individual attempts to cope with underlying physiological issues? Much research presented in this volume will point to the latter possibility, i.e. that people on the autism spectrum cope with issues at much lower physiological levels pertaining not only to Central Nervous Systems (CNS) function, but also to peripheral and autonomic systems (PNS, ANS) (Torres, Brincker, et al. 2013). The question that we pursue in this chapter is what might be fruitful ways of gaining objective measures of the large-scale systemic and heterogeneous effects of early atypical neurodevelopment; how to track their evolution over time and how to identify critical changes along the continuum of human development and aging. We suggest that the study of movement variability—very broadly conceived as including all minute fluctuations in bodily rhythms and their rates of change over time (coined micro-movements (Figure 1A-B) (Torres, Brincker, et al. 2013))—offers a uniquely valuable and entirely objectively quantifiable lens to better assess, understand and track not only autism but cognitive development and degeneration in general. This chapter presents the rationale firstly behind this focus on micro-movements and secondly behind the choice of specific kinds of data collection and statistical metrics as tools of analysis (Figure 1C). In brief the proposal is that the micro-movements (defined in Part I – Chapter 1), obtained using various time scales applied to different physiological data-types (Figure 1), contain information about layered influences and temporal adaptations, transformations and integrations across anatomically semi-independent subsystems that crosstalk and interact. Further, the notion of sensorimotor re-afference is used to highlight the fact that these layered micro-motions are sensed and that this sensory feedback plays a crucial role in the generation and control of movements in the first place. In other words, the measurements of various motoric and rhythmic variations provide an access point not only to the “motor systems”, but also access to much broader central and peripheral sensorimotor and regulatory systems. Lastly, we posit that this new lens can also be used to capture influences from systems of multiple entry points or collaborative control and regulation, such as those that emerge during dyadic social interactions
    • …
    corecore