6 research outputs found

    Lower Bounds on the Bounded Coefficient Complexity of Bilinear Maps

    Get PDF
    We prove lower bounds of order nlognn\log n for both the problem to multiply polynomials of degree nn, and to divide polynomials with remainder, in the model of bounded coefficient arithmetic circuits over the complex numbers. These lower bounds are optimal up to order of magnitude. The proof uses a recent idea of R. Raz [Proc. 34th STOC 2002] proposed for matrix multiplication. It reduces the linear problem to multiply a random circulant matrix with a vector to the bilinear problem of cyclic convolution. We treat the arising linear problem by extending J. Morgenstern's bound [J. ACM 20, pp. 305-306, 1973] in a unitarily invariant way. This establishes a new lower bound on the bounded coefficient complexity of linear forms in terms of the singular values of the corresponding matrix. In addition, we extend these lower bounds for linear and bilinear maps to a model of circuits that allows a restricted number of unbounded scalar multiplications.Comment: 19 page

    Barriers for Faster Dimensionality Reduction

    Get PDF

    Efficient Computation with Sparse and Dense Polynomials

    Get PDF
    Computations with polynomials are at the heart of any computer algebra system and also have many applications in engineering, coding theory, and cryptography. Generally speaking, the low-level polynomial computations of interest can be classified as arithmetic operations, algebraic computations, and inverse symbolic problems. New algorithms are presented in all these areas which improve on the state of the art in both theoretical and practical performance. Traditionally, polynomials may be represented in a computer in one of two ways: as a "dense" array of all possible coefficients up to the polynomial's degree, or as a "sparse" list of coefficient-exponent tuples. In the latter case, zero terms are not explicitly written, giving a potentially more compact representation. In the area of arithmetic operations, new algorithms are presented for the multiplication of dense polynomials. These have the same asymptotic time cost of the fastest existing approaches, but reduce the intermediate storage required from linear in the size of the input to a constant amount. Two different algorithms for so-called "adaptive" multiplication are also presented which effectively provide a gradient between existing sparse and dense algorithms, giving a large improvement in many cases while never performing significantly worse than the best existing approaches. Algebraic computations on sparse polynomials are considered as well. The first known polynomial-time algorithm to detect when a sparse polynomial is a perfect power is presented, along with two different approaches to computing the perfect power factorization. Inverse symbolic problems are those for which the challenge is to compute a symbolic mathematical representation of a program or "black box". First, new algorithms are presented which improve the complexity of interpolation for sparse polynomials with coefficients in finite fields or approximate complex numbers. Second, the first polynomial-time algorithm for the more general problem of sparsest-shift interpolation is presented. The practical performance of all these algorithms is demonstrated with implementations in a high-performance library and compared to existing software and previous techniques

    A spectral approach to lower bounds with applications to geometric searching

    No full text
    Abstract. We establish a nonlinear lower bound for halfplane range searching over a group. Specifically, we show that summing up the weights of n (weighted) points within n halfplanes requires Ω(n log n) additions and subtractions. This is the first nontrivial lower bound for range searching over a group. By contrast, range searching over a semigroup (which forbids subtractions) is almost completely understood. Our proof has two parts. First, we develop a general, entropy-based method for relating the linear circuit complexity of a linear map A to the spectrum of A ⊤ A. In the second part of the proof, we design a “high-spectrum ” geometric set system for halfplane range searching and, using techniques from discrepancy theory, we estimate the median eigenvalue of its associated map. Interestingly, the method also shows that using up to a linear number of help gates cannot help; these are gates that can compute any bivariate function
    corecore